Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation

The metabolic network model allows for an in-depth insight into the molecular mechanism of a particular organism. Because most parameters of the metabolic network cannot be directly measured, they must be estimated by using optimization algorithms. However, three characteristics of the metabolic network model, i.e., high nonlinearity, large amount parameters, and huge variation scopes of parameters, restrict the application of many traditional optimization algorithms. As a result, there is a growing demand to develop efficient optimization approaches to address this complex problem. In this paper, a Kriging-based algorithm aiming at parameter estimation is presented for constructing the metabolic networks. In the algorithm, a new infill sampling criterion, named expected improvement and mutual information (EI&MI), is adopted to improve the modeling accuracy by selecting multiple new sample points at each cycle, and the domain decomposition strategy based on the principal component analysis is introduced to save computing time. Meanwhile, the convergence speed is accelerated by combining a single-dimensional optimization method with the dynamic coordinate perturbation strategy when determining the new sample points. Finally, the algorithm is applied to the arachidonic acid metabolic network to estimate its parameters. The obtained results demonstrate the effectiveness of the proposed algorithm in getting precise parameter values under a limited number of iterations.

[1]  Julius Beneoluchi Odili,et al.  Large-Scale Kinetic Parameter Identification of Metabolic Network Model of E. coli Using PSO , 2015 .

[2]  Vincent Moulton,et al.  Parameter Reconstruction for Biochemical Networks Using Interval Analysis , 2006, Reliab. Comput..

[3]  Rudiyanto Gunawan,et al.  Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method , 2011, Bioinform..

[4]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[5]  Zidong Wang,et al.  An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  Shigeru Obayashi,et al.  Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[7]  Eberhard O Voit,et al.  Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems. , 2005, Journal of theoretical biology.

[8]  LiuXiaohui,et al.  An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series , 2009 .

[9]  David Ginsbourger,et al.  Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges , 2012, LION.

[10]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[11]  Rommel G. Regis,et al.  An Initialization Strategy for High-Dimensional Surrogate-Based Expensive Black-Box Optimization , 2013 .

[12]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[13]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[14]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[15]  Slawomir Koziel,et al.  Antenna Design by Simulation-Driven Optimization , 2014 .

[16]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[17]  Henry P. Wynn,et al.  Maximum entropy sampling , 1987 .

[18]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[19]  Z. Kutalik,et al.  S-system parameter estimation for noisy metabolic profiles using newton-flow analysis. , 2007, IET systems biology.

[20]  C. Shoemaker,et al.  Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization , 2013 .

[21]  Eva Balsa-Canto,et al.  Hybrid optimization method with general switching strategy for parameter estimation , 2008, BMC Systems Biology.

[22]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[23]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[24]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[25]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[26]  Feng-Sheng Wang,et al.  Hybrid differential evolution including geometric mean mutation for optimization of biochemical systems , 2010 .

[27]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[28]  Vincent Frouin,et al.  Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset , 2008, BMC Bioinformatics.

[29]  Z. Kutalik,et al.  Estimating parameters for generalized mass action models using constraint propagation. , 2007, Mathematical biosciences.

[30]  Layne T. Watson,et al.  Efficient global optimization algorithm assisted by multiple surrogate techniques , 2012, Journal of Global Optimization.

[31]  Kenneth Holmström,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization , 2008, J. Glob. Optim..

[32]  Julio R. Banga,et al.  A cooperative strategy for parameter estimation in large scale systems biology models , 2012, BMC Systems Biology.

[33]  Enying Li,et al.  Development of metamodeling based optimization system for high nonlinear engineering problems , 2008, Adv. Eng. Softw..

[34]  Junfeng Gu,et al.  Investigation on parallel algorithms in efficient global optimization based on multiple points infill criterion and domain decomposition , 2016 .

[35]  Slawomir Koziel,et al.  Surrogate-Based Optimization , 2014 .

[36]  A toolkit for efficiently generating Pareto sets in (bio)chemical multi-objective optimal control problems , 2010 .

[37]  Hong Wang,et al.  Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm. , 2014, Journal of theoretical biology.

[38]  S. Filizadeh,et al.  A surrogate-model based multi-modal optimization algorithm , 2011 .

[39]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[40]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[41]  L. Lai,et al.  Finding multiple target optimal intervention in disease-related molecular network , 2008, Molecular systems biology.

[42]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[43]  Aloke Kumar Ghoshal,et al.  Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics , 2008 .

[44]  Kwang-Hyun Cho,et al.  Optimal sampling time selection for parameter estimation in dynamic pathway modeling. , 2004, Bio Systems.

[45]  Hua Zuo,et al.  Pareto Optimal Solution Analysis of Convex Multi-Objective Programming Problem , 2013, J. Networks.

[46]  Feng-Sheng Wang,et al.  Hybrid differential evolution with geometric mean mutation in parameter estimation of bioreaction systems with large parameter search space , 2009, Comput. Chem. Eng..

[47]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[48]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[49]  V. Vassiliadis,et al.  Dynamic Optimization of Single- and Multi-Stage Systems Using a Hybrid Stochastic-Deterministic Method , 2005 .

[50]  Chi-Keong Goh,et al.  Computational Intelligence in Expensive Optimization Problems , 2010 .

[51]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[52]  K. Yamazaki,et al.  Sequential Approximate Optimization using Radial Basis Function network for engineering optimization , 2011 .

[53]  Dionisios G. Vlachos,et al.  Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory , 2013, BMC Bioinformatics.

[54]  Maw-Shang Chang,et al.  Dynamic sensitivity analysis of biological systems , 2008, BMC Bioinformatics.

[55]  Feng-Sheng Wang,et al.  Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..