Analysis of Laminated Shells by Murakami's Zig-Zag Theory and Radial Basis Functions Collocation

The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to Murakami’s zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.

[1]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[2]  D. Zenkert An Introduction to Sandwich Structures , 1995 .

[3]  S. Xiang,et al.  Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories , 2009 .

[4]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[5]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[6]  C.M.C. Roque,et al.  Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method , 2003 .

[7]  Y. Rajapakse,et al.  Sandwich Structures , 2020, Catalysis from A to Z.

[8]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[9]  Erasmo Carrera,et al.  Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis , 1998 .

[10]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[11]  António J.M. Ferreira,et al.  A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates , 2003 .

[12]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[13]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[14]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[15]  J. Pitkäranta The problem of membrane locking in finite element analysis of cylindrical shells , 1992 .

[16]  J. Vinson The Behavior of Sandwich Structures of Isotropic and Composite Materials , 1999 .

[17]  Guirong Liu,et al.  An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape , 2003 .

[18]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[19]  J. N. Reddy,et al.  BUCKLING OF SYMMETRICALLY LAMINATED COMPOSITE PLATES USING THE ELEMENT-FREE GALERKIN METHOD , 2002 .

[20]  Liviu Librescu,et al.  Recent developments in the modeling and behavior of advanced sandwich constructions: a survey , 2000 .

[21]  Renato Natal Jorge,et al.  Free Vibration Analysis of Composite and Sandwich Plates by a Trigonometric Layerwise Deformation Theory and Radial Basis Functions , 2006 .

[22]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[23]  E. Carrera Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking , 2003 .

[24]  Holm Altenbach,et al.  Theories for laminated and sandwich plates , 1998 .

[25]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[26]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[27]  E. Carrera,et al.  Zig-Zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates , 1997 .

[28]  António J.M. Ferreira,et al.  Thick Composite Beam Analysis Using a Global Meshless Approximation Based on Radial Basis Functions , 2003 .

[29]  Y. Hon,et al.  Multiquadric method for the numerical solution of a biphasic mixture model , 1997 .

[30]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[31]  A. Noor,et al.  Assessment of computational models for sandwich panels and shells , 1995 .

[32]  Gregory E. Fasshauer,et al.  Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .

[33]  K. Y. Dai,et al.  A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates , 2004 .

[34]  Salim Belouettar,et al.  Evaluation of Kinematic Formulations for Viscoelastically Damped Sandwich Beam Modeling , 2006 .

[35]  E. Carrera Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells , 2001 .

[36]  K. M. Liew,et al.  Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates , 2004 .

[37]  Y. Frostig,et al.  Behavior of Unidirectional Sandwich Panels with a Multi-Skin Construction or a Multi-Layered Core Layout-High-Order Approach , 2000 .

[38]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[39]  Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates , 2010 .

[40]  Huang Hou-Cheng,et al.  Membrane locking and assumed strain shell elements , 1987 .

[41]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[42]  Erasmo Carrera,et al.  Improved bending analysis of sandwich plates using a zig-zag function , 2009 .

[43]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[44]  Douglas N. Arnold,et al.  Locking-free finite element methods for shells , 1997, Math. Comput..

[45]  V.B.C. Tan,et al.  Element free method for static and free vibration analysis of spatial thin shell structures , 2002 .

[46]  Luciano Demasi,et al.  2D, Quasi 3D and 3D Exact Solutions for Bending of Thick and Thin Sandwich Plates , 2008 .

[47]  R. Jorge,et al.  Modelling cross-ply laminated elastic shells by a higher-order theory and multiquadrics , 2006 .

[48]  Qiusheng Li,et al.  Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method , 2004 .

[49]  E. Carrera C0 REISSNER–MINDLIN MULTILAYERED PLATE ELEMENTS INCLUDING ZIG-ZAG AND INTERLAMINAR STRESS CONTINUITY , 1996 .

[50]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[51]  Yeoshua Frostig,et al.  Bending of Curved Sandwich Panels with a Transversely Flexible Core-Closed-Form High-Order Theory , 1999 .

[52]  W. Flügge Stresses in Shells , 1960 .

[53]  Luciano Demasi,et al.  ∞3 Hierarchy plate theories for thick and thin composite plates: The generalized unified formulation , 2008 .

[54]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .