Quantitative evaluation of metamictisation of columbite-(Mn) from rare-element pegmatites using Raman spectroscopy

Raman spectroscopic analysis was performed on columbite-(Mn) samples from a variety of previously studied rare-element pegmatites in Xinjiang, China, including the Jing ’ erquan No. 1 spodumene-subtype, Dakalasu No. 1 beryl – columbite-subtype and Kalu ’ an spodumene-subtype pegmatites, to quantify the relationship between the degree of metamictisation of columbite and Raman spectra. For all of the analysed columbites-(Mn), the position ( p ) and the full width at half maximum (FWHM) of the strongest band, A 1 g vibration mode related to the Nb/Ta – O bond, in the Raman spectra have a negative correlation. Combined with previously determined U – Pb isotopic data and major – minor-element data for the columbites-(Mn), the degree of metamictisation was quantified using the alpha-decay dose (D) and displacement per atom (dpa), both of which were corrected for effects caused by annealing. The results demonstrate that the columbite-(Mn) from Jing ’ erquan and Kalu ’ an are very crystalline, whereas those from Dakalasu are transitional between crystalline and amorphous stages. The main factor influencing the key parameters, i.e. band position and FWHM, of the strongest Raman band of columbite-(Mn) is metamictisation caused by radiation damage, whereas composition and crystal orientation have limited influence. A set of equations are established to quantify the degree of metamictisation of columbite using the band position and the full width at half maximum: FWHM = 8.309 × ln( a D) + 30.11 ( R 2 = 0.9861); p = – 5.187 × ln( a D) + 867.09 ( R 2 = 0.966); FWHM = 8.1453 × ln( a dpa) + 48.425 ( R 2 = 0.9822); and p = – 5.078 × ln( a dpa) + 855.67 ( R 2 = 0.9594).

[1]  R. Linnen,et al.  LA-ICP-MS dating of high‑uranium columbite from no. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance , 2020 .

[2]  Z. Hou,et al.  Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit , 2020, Ore Geology Reviews.

[3]  Ting Liang,et al.  Columbite U-Pb Geochronology of Kalu’an Lithium Pegmatites in Northern Xinjiang, China: Implications for Genesis and Emplacement History of Rare-Element Pegmatites , 2019, Minerals.

[4]  S. Regan,et al.  Columbite-Group Minerals from New York Pegmatites: Insights from Isotopic and Geochemical Analyses , 2018 .

[5]  T. Oberthür,et al.  Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns , 2017 .

[6]  Min Wang,et al.  Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite , 2016, Ore Geology Reviews.

[7]  A. Gerdes,et al.  In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS , 2015 .

[8]  T. Váczi A New, Simple Approximation for the Deconvolution of Instrumental Broadening in Spectroscopic Band Profiles , 2014, Applied spectroscopy.

[9]  Hao Hu,et al.  U–Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP–MS: Implications for geochronology of pegmatite and associated ore deposits , 2013 .

[10]  M. Novák,et al.  HOW ARE THE EMPLACEMENT OF RARE-ELEMENT PEGMATITES, REGIONAL METAMORPHISM AND MAGMATISM INTERRELATED IN THE MOLDANUBIAN DOMAIN OF THE VARISCAN BOHEMIAN MASSIF, CZECH REPUBLIC? , 2012 .

[11]  Petr Černý,et al.  Granitic Pegmatites as Sources of Strategic Metals , 2012 .

[12]  G. Lumpkin,et al.  Chemistry, microstructure, and alpha decay damage of natural brannerite , 2012 .

[13]  R. L. Moreira,et al.  Polarized Raman scattering and infrared spectroscopy of a natural manganocolumbite single crystal , 2010 .

[14]  R. Romer,et al.  COLUMBITE–TANTALITE-BEARING GRANITIC PEGMATITES FROM THE SERIDÓ BELT, NORTHEASTERN BRAZIL: GENETIC CONSTRAINTS FROM U–Pb DATING AND Pb ISOTOPES , 2006 .

[15]  M. Zema,et al.  Mixing and ordering behavior in manganocolumbite-ferrocolumbite solid solution: A single-crystal X-ray diffraction study , 2005 .

[16]  M. Whitehouse,et al.  Long-term stability of alpha particle damage in natural zircon , 2005 .

[17]  S. Kelley,et al.  U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS , 2004 .

[18]  R. Romer Alpha-recoil in U–Pb geochronology: effective sample size matters , 2003 .

[19]  A. Beran,et al.  The Incorporation of Hydroxyl Groups and Molecular Water in Natural Zircon (ZrSiO4) , 2001 .

[20]  D. Neuville,et al.  Metamictization and chemical durability of detrital zircon , 2001 .

[21]  D. Davis,et al.  Preferential dissolution of 234U and radiogenic Pb from α-recoil-damaged lattice sites in zircon: implications for thermal histories and Pb isotopic fractionation in the near surface environment , 2001 .

[22]  H. Leroux,et al.  Metamictization of zircon: Raman spectroscopic study , 2000 .

[23]  G. Lumpkin Composition and structural state of columbite-tantalite from the Harding Pegmatite, Taos County, New Mexico , 1998 .

[24]  R. Romer,et al.  Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite , 1996 .

[25]  T. S. Ercit The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield , 1994 .

[26]  R. Romer,et al.  Implications of UPb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield , 1994 .

[27]  G. Lumpkin Analytical electron microscopy of columbite: A niobium-tantalum oxide mineral with zonal uranium distribution , 1992 .

[28]  W. J. Weber,et al.  Alpha-decay event damage in zircon , 1991 .

[29]  R. Ewing,et al.  Alpha-decay damage in minerals of the pyrochlore group , 1988 .

[30]  Y. Eyal,et al.  Preferential leaching and the age of radiation damage from alpha decay in minerals , 1985 .

[31]  M. Guinan,et al.  Radiation Effects in SYNROC-D , 1983 .

[32]  W. J. Weber,et al.  A Review of Radiation Effects in Solid Nuclear Waste Forms , 1983 .

[33]  H. Matzke Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels , 1982 .

[34]  N. Dao,et al.  Characterization of different bondings in some divalent metal niobates of columbite structure , 1977 .

[35]  D. Gottfried,et al.  The effect of nuclear radiation on the structure of zircon , 1955 .

[36]  T. Oberthür,et al.  Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology , 2015 .

[37]  Ma Zhan-lon Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite , 2015 .

[38]  R. Kaindl,et al.  Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .

[39]  W. Deng ~(40)Ar/~(39)Ar Isotope Dating on Muscovites from Indosinian Raremetal Depositsin Central Altay, Northwestern China , 2003 .

[40]  T. Wenzel,et al.  Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage , 2001 .

[41]  P. Černý,et al.  Mineralogy of Niobium and Tantalum: Crystal Chemical Relationships, Paragenetic Aspects and Their Economic Implications , 1989 .

[42]  E. Vance,et al.  Radiation effects on sphene and sphene-based glass-ceramics , 1984 .

[43]  W. Schull,et al.  Radiation effects. , 1982, Science.

[44]  C. The Crystal Chemistry of Complex Niobium and Tantalum Oxides . IV . The Metamict State : Discussion , 2022 .