Fractional-order sliding-mode stabilization of nonholonomic mobile robots based on dynamic feedback linearization

This paper considers the stabilization problem of nonholonomic mobile robots with fractional-order sliding-mode control. Two fractional sliding surfaces are designed for the corresponding linear subsystems after using dynamic feedback linearization strategy, then the stabilizing fractional-order controller is proposed. Finally, the simulation results show the efficiency of the control methods.

[1]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[2]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[3]  Arie Levant,et al.  Construction principles of output-feedback 2-sliding mode design , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[4]  Hua Deng,et al.  Chattering-free variable structure controller design via fractional calculus approach and its application , 2015 .

[5]  Xinghuo Yu,et al.  Chattering free full-order sliding-mode control , 2014, Autom..

[6]  Thierry Poinot,et al.  Fractional modelling and identification of thermal systems , 2011, Signal Process..

[7]  Hua Chen,et al.  Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation , 2014 .

[8]  Hengjun Zhang,et al.  Robust Practical Stabilization of Nonholonomic Mobile Robots Based on Visual Servoing Feedback with Inputs Saturation , 2014 .

[9]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[10]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[11]  Liu Yang,et al.  Semiglobal Stabilization for Nonholonomic Mobile Robots Based on Dynamic Feedback With Inputs Saturation , 2012 .

[12]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[13]  Chaoli Wang,et al.  Saturated tracking control for nonholonomic mobile robots with dynamic feedback , 2013 .

[14]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[15]  J. A. Tenreiro Machado,et al.  Chaotic Phenomena and Fractional-Order Dynamics in the Trajectory Control of Redundant Manipulators , 2002 .

[16]  Antonio Pedro Aguiar,et al.  Stabilization of the Extended Nonholonomic Double Integrator Via Logic-Based Hybrid Control , 2000 .

[17]  G. Bartolini,et al.  Modern sliding mode control theory : new perspectives and applications , 2008 .

[18]  Alessandro Astolfi,et al.  Discontinuous control of high-order generalized chained systems , 1999 .

[19]  Shouming Zhong,et al.  Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems , 2014, Autom..

[20]  Maria Letizia Corradini,et al.  On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants , 2015, Autom..

[21]  Ivo Petráš,et al.  Simulation of Drug Uptake in a Two Compartmental Fractional Model for a Biological System. , 2011, Communications in nonlinear science & numerical simulation.

[22]  Hua Chen,et al.  Global Practical Stabilization for Non-holonomic Mobile Robots with Uncalibrated Visual Parameters by Using a Switching Controller , 2013, IMA J. Math. Control. Inf..

[23]  Yu-Ping Tian,et al.  Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control , 2002, Autom..

[24]  Brandon Stark,et al.  Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system , 2015 .

[25]  Xi Chen,et al.  Global Finite-Time Stabilization for Nonholonomic Mobile Robots Based on Visual Servoing , 2014 .

[26]  Dongkyoung Chwa,et al.  Tracking Control of Differential-Drive Wheeled Mobile Robots Using a Backstepping-Like Feedback Linearization , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[27]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[28]  Shuzhi Sam Ge,et al.  Stabilization of nonholonomic chained systems via nonregular feedback linearization , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).