Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se2 Solar Cells.

Ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells pose challenges of incomplete absorption and back contact recombination. In this work, we applied the simple collodial nanosphere lithography and fabricated 2D SiO2 nanomeshes (NMs), which simultaneously benefit ultrathin CIGSe solar cells electrically and optically. Electrically, the NMs are capable of passivating the back contact recombination and increasing the minimum bandgap of absorbers. Optically, the parasitic absorption in Mo as a main optical loss is reduced. Consequently, the SiO2 NMs give rise to an increase of 3.5 mA/cm2 in short circuit current density (Jsc) and of 57 mV in open circuit voltage increase (Voc), leading to an absolute efficiency enhancement as high as 2.6% (relatively 30%) for CIGSe solar cells with an absorber thickness of only 370 nm and a steep back Ga/[Ga + In] grading.

[1]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[2]  Miro Zeman,et al.  Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells. , 2016, Optics express.

[3]  Paul W. Leu,et al.  Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. , 2014, Nano letters.

[4]  Uli Lemmer,et al.  Optoelectrical improvement of ultra‐thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer , 2016 .

[5]  M. Fang,et al.  Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning. , 2014, ACS applied materials & interfaces.

[6]  H. Sodabanlu,et al.  Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes , 2013, Scientific Reports.

[7]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[8]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[9]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[10]  Unyong Jeong,et al.  Assembled monolayers of hydrophilic particles on water surfaces. , 2011, ACS nano.

[11]  L. Ye,et al.  Fabrication of large-sized two-dimensional ordered surface array with well-controlled structure via colloidal particle lithography. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[12]  W. T. Chen,et al.  Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells. , 2014, ACS nano.

[13]  Daniel Lincot,et al.  Toward high efficiency ultra-thin CIGSe based solar cells using light management techniques , 2012, OPTO.

[14]  Z. Ren,et al.  A broadband solar absorber with 12 nm thick ultrathin a-Si layer by using random metallic nanomeshes , 2014 .

[15]  M. Schmid,et al.  Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature , 2015 .

[16]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[17]  D. Lincot,et al.  Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions , 2011 .

[18]  Xiaozhou Ye,et al.  Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications , 2011 .

[19]  Kang L. Wang,et al.  Metallic nanomesh electrodes with controllable optical properties for organic solar cells , 2012 .

[20]  Martina Schmid,et al.  Light absorption enhancement for ultra-thin Cu(In1−xGax)Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays , 2016 .

[21]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[22]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[23]  Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells , 2012 .

[24]  Coby S. Tao,et al.  Natural resource limitations to terawatt-scale solar cells , 2011 .

[25]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[26]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[27]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[28]  Michael Giersig,et al.  Shadow Nanosphere Lithography: Simulation and Experiment , 2004 .

[29]  I. Lauermann,et al.  Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se 2 solar cells , 2015 .

[30]  M. Schmid,et al.  The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films , 2013 .

[31]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[32]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .