One-proton and one-neutron knockout reactions from N=Z=28Ni56 to the A=55 mirror pair Co55 and Ni55

Author(s): Spieker, M; Gade, A; Weisshaar, D; Brown, BA; Tostevin, JA; Longfellow, B; Adrich, P; Bazin, D; Bentley, MA; Brown, JR; Campbell, CM; Diget, C Aa; Elman, B; Glasmacher, T; Hill, M; Pritychenko, B; Ratkiewicz, A; Rhodes, D | Abstract: © 2019 American Physical Society. We present a high-resolution in-beam γ-ray spectroscopy study of excited states in the mirror nuclei Co55 and Ni55 following one-nucleon knockout from a projectile beam of Ni56. The newly determined partial cross sections and the γ-decay properties of excited states provide a test of state-of-the-art nuclear structure models and probe mirror symmetry in unique ways. The new experimental data are compared to large-scale shell-model calculations in the full pf space which include charge-dependent contributions. A mirror asymmetry for the partial cross sections leading to the two lowest 3/2- states in the A=55 mirror pair was identified as well as a significant difference in the E1 decays from the 1/21+ state to the same two 3/2- states. The mirror asymmetry in the partial cross sections cannot be reconciled with the present shell-model picture or small mixing introduced in a two-state model. The observed mirror asymmetry in the E1 decay pattern, however, points at stronger mixing between the two lowest 3/2- states in Co55 than in its mirror Ni55.

[1]  A. Gade,et al.  Updated systematics of intermediate-energy single-nucleon removal cross sections , 2014, Physical Review C.

[2]  G. Angelis,et al.  Shape coexistence and isospin symmetry in A = 70 nuclei: Spectroscopy of the T = −1 nucleus 70Kr , 2018, Physics Letters B.

[3]  H. Hergert In-medium similarity renormalization group for closed and open-shell nuclei , 2016, 1607.06882.

[4]  B. Sherrill,et al.  NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability , 2016 .

[5]  D. Napoli,et al.  Mirrored one-nucleon knockout reactions to the T z =±3/2 A =53 mirror nuclei , 2016 .

[6]  C. Borcea,et al.  Spectroscopy of $^{35}$P using the one-proton knockout reaction , 2016, 1602.03296.

[7]  M. Hjorth-Jensen,et al.  Emergent properties of nuclei from ab initio coupled-cluster calculations , 2016, 1601.08203.

[8]  S. Lenzi,et al.  Isospin-breaking interactions studied through mirror energy differences , 2015 .

[9]  B. A. Brown,et al.  Single-particle structure of silicon isotopes approaching Si 42 , 2014 .

[10]  B. A. Brown,et al.  The Shell-Model Code NuShellX@MSU , 2014 .

[11]  W. Peters,et al.  Neutron spectroscopic factors of 55 Ni hole-states from (p, d) transfer reactions , 2014, 1401.7961.

[12]  A. Volya,et al.  Split isobaric analog state in 55Ni: case of strong isospin mixing. , 2013, Physical review letters.

[13]  D. Bazin,et al.  Mirror energy differences at large isospin studied through direct two-nucleon knockout. , 2013, Physical review letters.

[14]  J. Clark,et al.  Valence nucleon populations in the Ni isotopes , 2013 .

[15]  G. Angelis,et al.  Isospin symmetry violation in mirror E1 transitions: Coherent contributions from the giant isovector monopole resonance in the 67As-67Se doublet , 2012, 1209.5217.

[16]  A. Afanasjev,et al.  Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei , 2011, 1109.3969.

[17]  C. Barbieri Role of long-range correlations in the quenching of spectroscopic factors. , 2009, Physical review letters.

[18]  M. Carpenter,et al.  Coherent contributions to isospin mixing in the mirror pair 67As and 67Se. , 2009, Physical review letters.

[19]  B. Pritychenko,et al.  First {$\gamma$}-ray spectroscopy of Fe49 and Ni53: Isospin-breaking effects at large proton excess , 2009 .

[20]  T. Cocolios,et al.  Magnetic dipole moment of (57,59)Cu measured by in-gas-cell laser spectroscopy. , 2009, Physical review letters.

[21]  B. A. Brown,et al.  Doubly-magic nature of {sup 56}Ni: Measurement of the ground state nuclear magnetic dipole moment of {sup 55}Ni , 2009, 0905.2425.

[22]  M. Hjorth-Jensen,et al.  Quasiparticle and quasihole states of nuclei around Ni-56 , 2009, 0902.3942.

[23]  W. G. Lynch,et al.  Neutron spectroscopic factors of Ni isotopes from transfer reactions , 2008, 0809.4686.

[24]  D. Bazin,et al.  LaBr3:Ce scintillators for in-beam gamma-ray spectroscopy with fast beams of rare isotopes , 2008 .

[25]  N. Pattabiraman,et al.  Analog E1 transitions and isospin mixing , 2008 .

[26]  B. A. Brown,et al.  Coupled-cluster and configuration-interaction calculations for odd-A heavy nuclei. , 2008, Physical review letters.

[27]  B. A. Brown,et al.  Reduction of spectroscopic strength: Weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions , 2008 .

[28]  S. Lenzi,et al.  Coulomb energy differences between high-spin states in isobaric multiplets , 2007 .

[29]  B. A. Brown,et al.  Coupled-cluster and configuration-interaction calculations for heavy nuclei. , 2007, Physical review letters.

[30]  P. Isacker,et al.  The role of isospin symmetry in collective nuclear structure , 2006 .

[31]  D. Joss,et al.  High-spin spectroscopy of natural and unnatural parity states in the mirror-pair V-45/Ti-45 , 2006 .

[32]  B. A. Brown,et al.  Shell model analysis of the Ni-56 spectrum in the full pf model space , 2005 .

[33]  M. Carpenter,et al.  Mirror energy differences in the A = 31 mirror nuclei, S 31 and P 31 , and their significance in electromagnetic spin-orbit splitting , 2005 .

[34]  B. A. Brown,et al.  Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF 1 , 2005 .

[35]  B. A. Brown,et al.  Nuclear structure in the vicinity of N=Z=28 {sup 56}Ni , 2004 .

[36]  C. Ur,et al.  Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei. , 2004, Physical review letters.

[37]  B. A. Brown,et al.  New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core , 2004, nucl-th/0402079.

[38]  Z. Podolyák,et al.  Heavy nuclei studied in projectile fragmentation , 2003 .

[39]  J. Yurkon,et al.  The S800 spectrograph , 2003 .

[40]  A. Stolz,et al.  Commissioning the A1900 projectile fragment separator , 2003 .

[41]  M. Kárný,et al.  Beta decay of 57Zn* , 2002 .

[42]  B. A. Brown,et al.  Effective interaction for pf-shell nuclei , 2002, nucl-th/0205033.

[43]  G. Martínez-Pinedo,et al.  Isobaric multiplet yrast energies and isospin nonconserving forces. , 2002, Physical review letters.

[44]  G. Hackman,et al.  Thirty-two-fold segmented germanium detectors to identify /γ-rays from intermediate-energy exotic beams , 2001 .

[45]  J. Tostevin Single-nucleon knockout reactions at fragmentation beam energies , 2001 .

[46]  B. A. Brown,et al.  New Skyrme interaction for normal and exotic nuclei , 1998 .

[47]  C. Gagliardi,et al.  "Bare" single-particle energies in Ni-56. , 1996 .

[48]  W. Ormand,et al.  Empirical isospin-nonconserving hamiltonians for shell-model calculations , 1989 .

[49]  A. Hashizume,et al.  Nuclear data sheets for A = 120 , 1987 .

[50]  D. Miller,et al.  Deeply-bound hole states in 57Co and the spreading of the 1d52 hole strength distribution , 1987 .

[51]  B. Robertson,et al.  The 1377 keV level in 57Co , 1987 .

[52]  S. Gales,et al.  Spectroscopic study of 55Co via the 54Fe(τ, d)55Co and 54Fe(τ, dp̃)54Fe reactions , 1977 .

[53]  B. Erlandsson,et al.  Excited levels and isobaric analogue states in55Co investigated with the54Fe(p, γ)55Co reaction , 1977 .

[54]  B. Robertson,et al.  The 1g92 analogue state in 55Co , 1976 .

[55]  P. Callaghan,et al.  The magnetic dipole moment of 55Co , 1973 .

[56]  J. Fox,et al.  Study of the electromagnetic transitions in the 55Co nucleus , 1972 .

[57]  K. S. Burton,et al.  MEAN LIVES AND ANGULAR CORRELATIONS IN $sup 57$Co WITH THE $sup 54$Fe($alpha$,p$gamma$)$sup 57$Co REACTION. , 1971 .