A RECONCILIATION ANALYSIS OF HOST SWITCHING IN PLANT‐FUNGAL SYMBIOSES

Abstract Plant‐fungal symbioses include many familiar antagonistic and mutualistic associations and some model cases of coevolution. The relationship between coevolution at the different evolutionary scales has remained an open question. Widespread host specificity and documented host switches offer conflicting indications of what to expect from comparisons of plant and fungal phylogenies. This study sought to establish the role of plant phylogeny in determining fungal phylogeny and the relative contributions of codivergence and host switching by comparing tree topologies for 15 plant‐fungal symbioses. Second it attempted to characterize the relationship between phylogenetic congruence and switching. Trees were estimated from published sequences and reconciliation analysis was applied in the form of cophylogeny mapping using “jungles”. This provided an exhaustive account of all possible switches capable of reconciling two associated phylogenies. A continuum of cophylogenetic dynamics was identified, ranging from mostly codivergence (e.g., Exobasidium) to mostly switching, (e.g., Erysiphe). Surprisingly, congruent solutions do not necessarily have fewer switches when using cophylogeny mapping, but a significant negative relationship between congruence and the distance of switches proved to be a useful indicator. According to reconciliation analysis, the contribution of host phylogeny varies widely across plant‐fungal symbioses, making host specificity and coad‐aptation poor indicators of macroevolutionary trends because they are necessary, but not sufficient, conditions.

[1]  F. Oberwinkler,et al.  Implications of molecular characters for the phylogeny of the genus Entyloma * * Part 203 in the ser , 2002 .

[2]  J. Farris A Successive Approximations Approach to Character Weighting , 1969 .

[3]  C. Schardl,et al.  Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Berbee,et al.  Dating the evolutionary radiations of the true fungi , 1993 .

[5]  S. Frank,et al.  Models of plant-pathogen coevolution. , 1992, Trends in genetics : TIG.

[6]  Fredrik Ronquist,et al.  RECONSTRUCTING THE HISTORY OF HOST‐PARASITE ASSOCIATIONS USING GENERALISED PARSIMONY , 1995, Cladistics : the international journal of the Willi Hennig Society.

[7]  S. Takamatsu,et al.  Phylogenetic relationships ofMicrosphaera andErysiphe sectionErysiphe (powdery mildews) inferred from the rDNA ITS sequences , 1999 .

[8]  S. Paz The phylogeny and evolution of the genus Claviceps , 2001 .

[9]  A. Leuchtmann,et al.  Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species , 2002 .

[10]  Pierre Legendre,et al.  A statistical test for host-parasite coevolution. , 2002, Systematic biology.

[11]  K. Hilu,et al.  Phylogeny of Poaceae Inferred from matK Sequences , 1999 .

[12]  T. Bruns,et al.  Phylogenetic relationships among the pine stem rust fungi (Cronartium and Peridermium spp.) , 1998 .

[13]  R. Page Maps between trees and cladistic analysis of historical associations among genes , 1994 .

[14]  A BAYESIAN FRAMEWORK FOR THE ANALYSIS OF COSPECIATION , 2000, Evolution; international journal of organic evolution.

[15]  C. Miles,et al.  The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere1 , 2002, Mycologia.

[16]  T. Bruns,et al.  Fine‐level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups , 2002, Molecular ecology.

[17]  J. A. Hart RUST FUNGI AND HOST PLANT COEVOLUTION: DO PRIMITIVE HOSTS HARBOR PRIMITIVE PARASITES? , 1988, Cladistics : the international journal of the Willi Hennig Society.

[18]  R. Bauer,et al.  PHYLOGENETIC STUDIES ON NUCLEAR LARGE SUBUNIT RIBOSOMAL DNA SEQUENCES OF SMUT FUNGI AND RELATED TAXA , 1997 .

[19]  Michael A Charleston,et al.  Recent results in cophylogeny mapping. , 2003, Advances in parasitology.

[20]  S. Takamatsu,et al.  A parasitic transition from trees to herbs occurred at least twice in tribe Cystotheceae (Erysiphaceae): Evidence from nuclear ribosomal DNA , 2000 .

[21]  M. Piepenbring,et al.  MOLECULAR SEQUENCE DATA ASSESS THE VALUE OF MORPHOLOGICAL CHARACTERISTICS FOR A PHYLOGENETIC CLASSIFICATION OF SPECIES OF CINTRACTIA , 1999 .

[22]  C. Schardl,et al.  Multigene Phylogeny of Epichloe Species, Fungal Symbionts of Grasses , 2001 .

[23]  J. Starr,et al.  Tribal Phylogeny of the Asteraceae Based on Two Non-Coding Chloroplast Sequences, the trnL Intron and trnL/trnF Intergenic Spacer , 1998 .

[24]  M. Piercey-Normore,et al.  Algal switching among lichen symbioses. , 2001, American journal of botany.

[25]  M. Berbee,et al.  The phylogeny of plant and animal pathogens in the Ascomycota , 2001 .

[26]  C. Schardl Epichloë festucae and related mutualistic symbionts of grasses. , 2001, Fungal genetics and biology : FG & B.

[27]  Ziheng Yang,et al.  STATISTICAL TESTS OF HOST‐PARASITE COSPECIATION , 1997, Evolution; international journal of organic evolution.

[28]  M. Pfunder,et al.  Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias , 2001 .

[29]  Roderic D. M. Page,et al.  COMPONENT ANALYSIS: A VALIANT FAILURE? , 1990, Cladistics : the international journal of the Willi Hennig Society.

[30]  J. Bever,et al.  LOCAL ADAPTATION IN THE LINUM MARGINALE—MELAMPSORA LINI HOST‐PATHOGEN INTERACTION , 2002, Evolution; international journal of organic evolution.

[31]  C. Lévesque,et al.  Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes , 2000 .

[32]  M. Steel,et al.  Recovering evolutionary trees under a more realistic model of sequence evolution. , 1994, Molecular biology and evolution.

[33]  Roderic D. M. Page,et al.  Genes, organisms, and areas: the problem of multiple lineages , 1993 .

[34]  M. Hood,et al.  The Ecology and Genetics of a Host Shift: Microbotryum as a Model System , 2002, The American Naturalist.

[35]  M. Charleston,et al.  Jungles: a new solution to the host/parasite phylogeny reconciliation problem. , 1998, Mathematical biosciences.

[36]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[37]  S. Johansen,et al.  Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. , 1999, Molecular biology and evolution.

[38]  G. Durrieu,et al.  Phylogénie de champignons responsables des charbons des végétaux à partir de l'analyse des séquences ITS , 1998 .

[39]  R. Poulin Evolutionary Ecology of Parasites: From individuals to communities , 1997 .

[40]  T. Hijwegen Coevolution of flowering plants with pathogenic fungi. , 1988 .

[41]  K. Chung,et al.  VEGETATIVE COMPATIBILITY BETWEEN AND WITHIN EPICHLOE SPECIES , 1997 .

[42]  S. Takamatsu,et al.  Evolution of host-parasite relationships of Golovinomyces (Ascomycete: Erysiphaceae) inferred from nuclear rDNA sequences. , 2003, Molecular phylogenetics and evolution.

[43]  D. Clayton,et al.  A data based parsimony method of cophylogenetic analysis , 2001 .

[44]  R. Gray,et al.  Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. , 2000, Systematic biology.

[45]  R. Finkel,et al.  Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens , 2004, Plant Systematics and Evolution.

[46]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[47]  M. Weiß,et al.  Phylogeny of the rust fungi: an approach using nuclear large subunit ribosomal DNA sequences , 2003 .

[48]  M. Charleston,et al.  Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. , 2002, Systematic biology.

[49]  M. C. Heath,et al.  The evolutionary significance of variation in infection behavior in two species of rust fungi on their hosts and related nonhost plant species , 2001 .

[50]  S. Pažoutová The phylogeny and evolution of the genus Claviceps , 2001 .

[51]  R. Page,et al.  Trees within trees: phylogeny and historical associations. , 1998, Trends in ecology & evolution.

[52]  B. Roy,et al.  PATTERNS OF ASSOCIATION BETWEEN CRUCIFERS AND THEIR FLOWER‐MIMIC PATHOGENS: HOST JUMPS ARE MORE COMMON THAN COEVOLUTION OR COSPECIATION , 2001, Evolution; international journal of organic evolution.

[53]  COSPECIATION BETWEEN BACTERIAL ENDOSYMBIONTS (BUCHNERA) AND A RECENT RADIATION OF APHIDS (UROLEUCON) AND PITFALLS OF TESTING FOR PHYLOGENETIC CONGRUENCE , 2000, Evolution; international journal of organic evolution.

[54]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[55]  C. Schardl,et al.  Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses , 2002, The American Naturalist.

[56]  John W. Taylor,et al.  Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. , 1999 .

[57]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[58]  J. Burdon,et al.  Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina , 1999 .

[59]  A. McCartney,et al.  A Polymerase Chain Reaction (PCR) Assay for the Detection of Inoculum of Sclerotinia sclerotiorum , 2002, European Journal of Plant Pathology.

[60]  James Francis White,et al.  An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species , 1998 .

[61]  G. Durrieu,et al.  Phylogenetic relationships among smut fungi parasitizing dicotyledons based on ITS sequence analysis , 2002 .

[62]  D. Penny,et al.  Coevolution by Common Descent of Fungal Symbionts (Epichloe spp.) and Grass Hosts , 1997 .

[63]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[64]  Jerrold I. Davis,et al.  Phylogeny and subfamilial classification of the grasses (Poaceae) , 2001 .

[65]  E. Kellogg,et al.  Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. , 2000, American journal of botany.