Putative malignant hyperthermia mutation CaV1.1-R174W is insufficient to trigger a fulminant response to halothane or confer heat stress intolerance

[1]  P. Allen,et al.  Molecular Modification of Transient Receptor Potential Canonical 6 Channels Modulates Calcium Dyshomeostasis in a Mouse Model Relevant to Malignant Hyperthermia. , 2020, Anesthesiology.

[2]  R. Saxena,et al.  Variant Curation Expert Panel Recommendations for RYR1 Pathogenicity Classifications in Malignant Hyperthermia Susceptibility , 2020, Genetics in Medicine.

[3]  J. Dowling,et al.  Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990–2019 , 2020, Orphanet Journal of Rare Diseases.

[4]  P. Allen,et al.  TRPCs: Influential Mediators in Skeletal Muscle , 2020, Cells.

[5]  B. Flucher Skeletal muscle CaV1.1 channelopathies , 2020, Pflügers Archiv - European Journal of Physiology.

[6]  Jose A. Adams,et al.  Contribution of TRPC Channels to Intracellular Ca2 + Dyshomeostasis in Smooth Muscle From mdx Mice , 2020, Frontiers in Physiology.

[7]  R. Altman,et al.  PharmGKB summary: very important pharmacogene information for CACNA1S , 2019, Pharmacogenetics and genomics.

[8]  P. Allen,et al.  Understanding malignant hyperthermia: each move forward opens our eyes to the distance left to travel. , 2019, British journal of anaesthesia.

[9]  P. Allen,et al.  Malignant hyperthermia, environmental heat stress, and intracellular calcium dysregulation in a mouse model expressing the p.G2435R variant of RYR1 , 2018, British journal of anaesthesia.

[10]  Pawan Kumar Gupta,et al.  Genetic epidemiology of malignant hyperthermia in the UK , 2018, British journal of anaesthesia.

[11]  C. Franzini-armstrong The relationship between form and function throughout the history of excitation–contraction coupling , 2018, The Journal of general physiology.

[12]  K. Beam,et al.  De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca2+ release , 2017, Proceedings of the National Academy of Sciences.

[13]  K. Stowell,et al.  Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia. , 2016, British journal of anaesthesia.

[14]  N. Pollock,et al.  Malignant hyperthermia: a review , 2015, Orphanet Journal of Rare Diseases.

[15]  Pawan Gupta,et al.  Next-generation Sequencing of RYR1 and CACNA1S in Malignant Hyperthermia and Exertional Heat Illness , 2015, Anesthesiology.

[16]  S. Cannon Channelopathies of skeletal muscle excitability. , 2015, Comprehensive Physiology.

[17]  P. Allen,et al.  Ca2+ Influx via the Na+/Ca2+ Exchanger Is Enhanced in Malignant Hyperthermia Skeletal Muscle* , 2014, The Journal of Biological Chemistry.

[18]  R. Bannister,et al.  Differential effects of RGK proteins on L-type channel function in adult mouse skeletal muscle. , 2014, Biophysical journal.

[19]  M. Brini,et al.  Neuronal calcium signaling: function and dysfunction , 2014, Cellular and Molecular Life Sciences.

[20]  K. Beam,et al.  Impaired gating of an L-Type Ca(2+) channel carrying a mutation linked to malignant hyperthermia. , 2013, Biophysical journal.

[21]  P. Allen,et al.  Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  K. Beam,et al.  Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor , 2012, Proceedings of the National Academy of Sciences.

[23]  S. Boncompagni,et al.  Mice expressing T4826I‐RYR1 are viable but exhibit sex‐ and genotype‐dependent susceptibility to malignant hyperthermia and muscle damage , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  P. Allen,et al.  Gene Dose Influences Cellular and Calcium Channel Dysregulation in Heterozygous and Homozygous T4826I-RYR1 Malignant Hyperthermia-susceptible Muscle* , 2011, The Journal of Biological Chemistry.

[25]  C. Ward,et al.  Orthograde dihydropyridine receptor signal regulates ryanodine receptor passive leak , 2011, Proceedings of the National Academy of Sciences.

[26]  P. Allen,et al.  Functional and Biochemical Properties of Ryanodine Receptor Type 1 Channels from Heterozygous R163C Malignant Hyperthermia-Susceptible Mice , 2011, Molecular Pharmacology.

[27]  B. Flucher,et al.  Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavalpha1S-subunit. , 2010, American journal of physiology. Cell physiology.

[28]  K. Beam,et al.  A malignant hyperthermia–inducing mutation in RYR1 (R163C): alterations in Ca2+ entry, release, and retrograde signaling to the DHPR , 2010, The Journal of general physiology.

[29]  K. Beam,et al.  A malignant hyperthermia–inducing mutation in RYR1 (R163C): consequent alterations in the functional properties of DHPR channels , 2010, The Journal of general physiology.

[30]  W. Beattie,et al.  A report of fulminant malignant hyperthermia in a patient with a novel mutation of the CACNA1S gene , 2010, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[31]  T. Molinski,et al.  RyR1-mediated Ca2+ Leak and Ca2+ Entry Determine Resting Intracellular Ca2+ in Skeletal Myotubes* , 2010, The Journal of Biological Chemistry.

[32]  K. Beam,et al.  The Skeletal L-type Ca2+ Current Is a Major Contributor to Excitation-coupled Ca2+ entry , 2009, The Journal of general physiology.

[33]  C. Ward,et al.  Enhanced Excitation-Coupled Calcium Entry in Myotubes Expressing Malignant Hyperthermia Mutation R163C Is Attenuated by Dantrolene , 2008, Molecular Pharmacology.

[34]  P. Allen,et al.  Pharmacologic and Functional Characterization of Malignant Hyperthermia in the R163C RyR1 Knock-in Mouse , 2006, Anesthesiology.

[35]  J. Lueck,et al.  Heat‐ and anesthesia‐induced malignant hyperthermia in an RyR1 knock‐in mouse , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  B. Flucher,et al.  Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling. , 2004, American journal of physiology. Cell physiology.

[37]  G. Ávila,et al.  Functional Effects of Central Core Disease Mutations in the Cytoplasmic Region of the Skeletal Muscle Ryanodine Receptor , 2001, The Journal of general physiology.

[38]  P Stieglitz,et al.  Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. , 1997, American journal of human genetics.

[39]  T. Molinski,et al.  Bastadins relate ryanodine-sensitive and -insensitive Ca2+ efflux pathways in skeletal SR and BC3H1 cells. , 1997, The American journal of physiology.

[40]  Hanh T. Nguyen,et al.  Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor , 1996, Nature.

[41]  K. Mikoshiba,et al.  Molecular Diversity of Voltage‐Dependent Calcium Channel , 1993, Annals of the New York Academy of Sciences.

[42]  K. Storey,et al.  Bound and determined: a computer program for making buffers of defined ion concentrations. , 1992, Analytical biochemistry.

[43]  B. Adams,et al.  Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling , 1990, Nature.

[44]  P. Allen,et al.  Myoplasmic free [Ca2+] during a malignant hyperthermia episode in swine , 1988, Muscle & nerve.

[45]  P. Allen,et al.  Dantrolene prevents the malignant hyperthermic syndrome by reducing free intracellular calcium concentration in skeletal muscle of susceptible swine. , 1987, Cell calcium.

[46]  L. Alamo,et al.  Deficient function of the sarcoplasmic reticulum in patients susceptible to malignant hyperthermia , 1987, Muscle & nerve.

[47]  C. Caputo,et al.  Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia , 1985, Muscle & nerve.

[48]  R. Dipolo,et al.  Determination of ionic calcium in frog skeletal muscle fibers. , 1983, Biophysical journal.

[49]  A. Morris,et al.  The role of CACNA1S in predisposition to malignant hyperthermia , 2009, BMC Medical Genetics.

[50]  B. Fraysse,et al.  Expression of the Na(+)/Ca(2+) exchanger in skeletal muscle. , 2001, American journal of physiology. Cell physiology.

[51]  J. S. Bunn,et al.  Prediction of malignant hyperthermia susceptibility in low-risk subjects. An epidemiologic investigation of caffeine halothane contracture responses. The North American Malignant Hyperthermia Registry. , 1992, Anesthesiology.

[52]  P. Allen,et al.  EU 4093 decreases intracellular [Ca2+] in skeletal muscle fibers from control and malignant hyperthermia-susceptible swine. , 1992, Anesthesiology.

[53]  G. Adams,et al.  Nitroheterocyclic compounds as radiation sensitizers and bioreductive drugs. , 1991, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.