Video Denoising with Optical Flow Estimation

In this paper we describe the implementation of state-of-the-art video denoising algorithm SPTWO [A. Buades, J.L. Lisani, M. Miladinović, Patch Based Video Denoising with Optical Flow Estimation, IEEE Transactions on Image Processing 25 (6), 2573–2586]. This algorithm, inspired by image fusion techniques, uses motion compensation by regularized optical flow methods, which permits robust patch comparison in spatiotemporal volumes. Groups of similar patches are denoised using Principal Component Analysis, which ensures the correct preservation of fine texture and details. Source Code The reviewed source code and documentation for this algorithm are available from the web page of this article1.

[1]  Javier Sánchez Pérez,et al.  TV-L1 Optical Flow Estimation , 2013, Image Process. Line.

[2]  Yoram Bresler,et al.  Video denoising by online 3D sparsifying transform learning , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[3]  Kostadin Dabov,et al.  BM3D Image Denoising with Shape-Adaptive Principal Component Analysis , 2009 .

[4]  Chee Seng Chan,et al.  Color video denoising using epitome and sparse coding , 2015, Expert Syst. Appl..

[5]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[6]  Michael Elad,et al.  Image Sequence Denoising via Sparse and Redundant Representations , 2009, IEEE Transactions on Image Processing.

[7]  Patrick Bouthemy,et al.  Space-Time Adaptation for Patch-Based Image Sequence Restoration , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Karen O. Egiazarian,et al.  Video denoising by sparse 3D transform-domain collaborative filtering , 2007, 2007 15th European Signal Processing Conference.

[9]  Jean-Michel Morel,et al.  A Nonlocal Bayesian Image Denoising Algorithm , 2013, SIAM J. Imaging Sci..

[10]  A. Murat Tekalp,et al.  Adaptive motion-compensated filtering of noisy image sequences , 1993, IEEE Trans. Circuits Syst. Video Technol..

[11]  Zuowei Shen,et al.  Robust Video Restoration by Joint Sparse and Low Rank Matrix Approximation , 2011, SIAM J. Imaging Sci..

[12]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[13]  Jean-Michel Morel,et al.  Photographing Paintings by Image Fusion , 2012, SIAM J. Imaging Sci..

[14]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Karen O. Egiazarian,et al.  Video denoising using separable 4D nonlocal spatiotemporal transforms , 2011, Electronic Imaging.

[16]  David Zhang,et al.  Two-stage image denoising by principal component analysis with local pixel grouping , 2010, Pattern Recognit..

[17]  Jean-Michel Morel,et al.  Towards a Bayesian Video Denoising Method , 2015, ACIVS.

[18]  Zuowei Shen,et al.  Robust video denoising using low rank matrix completion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[20]  Jose Luis Lisani,et al.  Patch-Based Video Denoising With Optical Flow Estimation , 2016, IEEE Transactions on Image Processing.