Combining eye movements and collaborative filtering for proactive information retrieval

We study a new task, proactive information retrieval by combining implicit relevance feedback and collaborative filtering. We have constructed a controlled experimental setting, a prototype application, in which the users try to find interesting scientific articles by browsing their titles. Implicit feedback is inferred from eye movement signals, with discriminative hidden Markov models estimated from existing data in which explicit relevance feedback is available. Collaborative filtering is carried out using the User Rating Profile model, a state-of-the-art probabilistic latent variable model, computed using Markov Chain Monte Carlo techniques. For new document titles the prediction accuracy with eye movements, collaborative filtering, and their combination was significantly better than by chance. The best prediction accuracy still leaves room for improvement but shows that proactive information retrieval and combination of many sources of relevance feedback is feasible.

[1]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[2]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[3]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[4]  Samuel Kaski,et al.  Can Relevance be Inferred from Eye Movements in Information Retrieval , 2003 .

[5]  Samuel Kaski,et al.  Relevance Feedback from Eye Movements for Proactive Information Retrieval , 2004 .

[6]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[7]  Richard A. Bolt,et al.  A gaze-responsive self-disclosing display , 1990, CHI '90.

[8]  Christine L. Lisetti,et al.  MAUI: a multimodal affective user interface , 2002, MULTIMEDIA '02.

[9]  Thomas Hofmann,et al.  Unifying collaborative and content-based filtering , 2004, ICML.

[10]  Wray L. Buntine Variational Extensions to EM and Multinomial PCA , 2002, ECML.

[11]  Paul P. Maglio,et al.  SUITOR: an attentive information system , 2000, IUI '00.

[12]  Mark J. F. Gales,et al.  Discriminative map for acoustic model adaptation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[13]  Veikko Surakka,et al.  Person-independent estimation of emotional experiences from facial expressions , 2005, IUI '05.

[14]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[15]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[16]  David J. Ward,et al.  Fast Hands-free Writing by Gaze Direction , 2002, ArXiv.

[17]  John R. Anderson,et al.  Automated Eye-Movement Protocol Analysis , 2001, Hum. Comput. Interact..

[18]  David J. Ward,et al.  Artificial intelligence: Fast hands-free writing by gaze direction , 2002, Nature.

[19]  Paul P. Maglio,et al.  Attentive agents , 2003, Commun. ACM.

[20]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[21]  Päivi Majaranta,et al.  Proactive Response to Eye Movements , 2003, INTERACT.

[22]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[23]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[24]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[25]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.