From Feature Space to Primal Space: KPCA and Its Mixture Model

[1]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[2]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[3]  Bernhard Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, International Conference on Machine Learning.

[4]  E. Oja,et al.  Independent Component Analysis , 2013 .

[5]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[6]  Lei Wang,et al.  Generalized 2D principal component analysis for face image representation and recognition , 2005, Neural Networks.

[7]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[8]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[9]  Roman Rosipal,et al.  An Expectation-Maximization Approach to Nonlinear Component Analysis , 2001, Neural Computation.

[10]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[11]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[12]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[13]  Wenming Zheng,et al.  An Improved Algorithm for Kernel Principal Component Analysis , 2005, Neural Processing Letters.

[14]  Xuelong Li,et al.  KPCA for semantic object extraction in images , 2008, Pattern Recognit..

[15]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[16]  Nello Cristianini,et al.  Latent Semantic Kernels , 2001, Journal of Intelligent Information Systems.

[17]  Andrzej Cichocki,et al.  Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression , 2001, Neural Computing & Applications.

[18]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[19]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[20]  Jong-Hoon Ahn,et al.  A Constrained EM Algorithm for Principal Component Analysis , 2003, Neural Computation.

[21]  Hyun-Chul Kim,et al.  Face recognition using the mixture-of-eigenfaces method , 2002, Pattern Recognit. Lett..