Fourth-Order Time-Stepping for Stiff PDEs

A modification of the exponential time-differencing fourth-order Runge--Kutta method for solving stiff nonlinear PDEs is presented that solves the problem of numerical instability in the scheme as proposed by Cox and Matthews and generalizes the method to nondiagonal operators. A comparison is made of the performance of this modified exponential time-differencing (ETD) scheme against the competing methods of implicit-explicit differencing, integrating factors, time-splitting, and Fornberg and Driscoll's "sliders" for the KdV, Kuramoto--Sivashinsky, Burgers, and Allen--Cahn equations in one space dimension. Implementation of the method is illustrated by short MATLAB programs for two of the equations. It is found that for these applications with fixed time steps, the modified ETD scheme is the best.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[3]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[4]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[5]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[6]  P. Hartman Ordinary Differential Equations , 1965 .

[7]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[8]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[9]  S. P. Nørsett An A-stable modification of the Adams-Bashforth methods , 1969 .

[10]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[11]  Y. Kuramoto,et al.  Persistent Propagation of Concentration Waves in Dissipative Media Far from Thermal Equilibrium , 1976 .

[12]  J. Varah Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .

[13]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[14]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[15]  T. Chan,et al.  FOURIER METHODS WITH EXTENDED STABILITY INTERVALS FOR THE KORTEWEG-DE VRIES EQUATION. , 1985 .

[16]  Roger Temam,et al.  Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attr , 1985 .

[17]  A. Aceves,et al.  Chaos and coherent structures in partial differential equations , 1986 .

[18]  E. Tadmor The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .

[19]  J. Hyman,et al.  THE KURAMOTO-SIV ASIDNSKY EQUATION: A BRIDGE BETWEEN POE'S AND DYNAMICAL SYSTEMS , 1986 .

[20]  A. Hindmarsh,et al.  Stiff ode slovers: a review of current and coming attractions , 1987 .

[21]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[22]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[23]  I. N. Sneddon,et al.  The Solution of Ordinary Differential Equations , 1987 .

[24]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[25]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[26]  Einar M. Rønquist,et al.  An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .

[27]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[28]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[29]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[30]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[31]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[32]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[33]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[34]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[35]  W. Merryfield,et al.  Properties of Collocation Third-Derivative Operators , 1993 .

[36]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[37]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[38]  J. Blom,et al.  An implicit-explicit approach for atmospheric transport-chemistry problems , 1996 .

[39]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[40]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[41]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[42]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[43]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[44]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[45]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[46]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[47]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[48]  Leslie M. Smith,et al.  Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence , 1999 .

[49]  Esteban G. Tabak,et al.  A PseudoSpectral Procedure for the Solution of Nonlinear Wave Equations with Examples from Free-Surface Flows , 1999, SIAM J. Sci. Comput..

[50]  T. Driscoll,et al.  Regular Article: A Fast Spectral Algorithm for Nonlinear Wave Equations with Linear Dispersion , 1999 .

[51]  B. V. Leer,et al.  A quasi-steady state solver for the stiff ordinary differential equations of reaction kinetics , 2000 .

[52]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[53]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[54]  Bertil Gustafsson,et al.  Deferred Correction Methods for Initial Boundary Value Problems , 2002, J. Sci. Comput..

[55]  T. Driscoll A composite Runge-Kutta method for the spectral solution of semilinear PDEs , 2002 .

[56]  Michelle Schatzman,et al.  Toward Non Commutative Numerical Analysis: High Order Integration in Time , 2002, J. Sci. Comput..

[57]  Leslie M. Smith,et al.  Generation of slow large scales in forced rotating stratified turbulence , 2002, Journal of Fluid Mechanics.

[58]  Juan C. Jiménez,et al.  Dynamic properties of the local linearization method for initial-value problems , 2002, Appl. Math. Comput..

[59]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[60]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[61]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[62]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[63]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .