Quantum cryptography based on qutrit Bell inequalities

We present a cryptographic protocol based upon entangled qutrit pairs. We analyze the scheme under a symmetric incoherent attack and plot the region for which the protocol is secure and compare this with the region of violations of certain Bell inequalities.

[1]  D. Kaszlikowski,et al.  Clauser-Horne inequality for three-state systems , 2002 .

[2]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[3]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[4]  D. Kaszlikowski,et al.  Entangled three-state systems violate local realism more strongly than qubits: An analytical proof , 2001, quant-ph/0103099.

[5]  A. Chefles Quantum state discrimination , 2000, quant-ph/0010114.

[6]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[7]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[8]  Marek Żukowski,et al.  Realizable higher-dimensional two-particle entanglements via multiport beam splitters , 1997 .

[9]  A. Zeilinger,et al.  Hamiltonian theory of a symmetric multiport , 1995 .

[10]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[11]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[12]  William K. Wootters,et al.  Quantum mechanics without probability amplitudes , 1986 .

[13]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[14]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..