Quantum cryptography based on qutrit Bell inequalities
暂无分享,去创建一个
Matthias Christandl | Dagomir Kaszlikowski | Artur Ekert | Leong Chuan Kwek | Daniel K. L. Oi | D. Kaszlikowski | M. Christandl | A. Ekert | L. Kwek | D. Oi | Kelken Chang | Choo Hiap Oh | Kelken Chang | C. Oh
[1] D. Kaszlikowski,et al. Clauser-Horne inequality for three-state systems , 2002 .
[2] Anders Karlsson,et al. Security of quantum key distribution using d-level systems. , 2001, Physical review letters.
[3] D. Bruß,et al. Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.
[4] D. Kaszlikowski,et al. Entangled three-state systems violate local realism more strongly than qubits: An analytical proof , 2001, quant-ph/0103099.
[5] A. Chefles. Quantum state discrimination , 2000, quant-ph/0010114.
[6] Zeilinger,et al. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.
[7] H. Bechmann-Pasquinucci,et al. Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.
[8] Marek Żukowski,et al. Realizable higher-dimensional two-particle entanglements via multiport beam splitters , 1997 .
[9] A. Zeilinger,et al. Hamiltonian theory of a symmetric multiport , 1995 .
[10] Reck,et al. Experimental realization of any discrete unitary operator. , 1994, Physical review letters.
[11] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[12] William K. Wootters,et al. Quantum mechanics without probability amplitudes , 1986 .
[13] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[14] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[15] Claude E. Shannon,et al. Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..