Analysis of the circRNAs expression profile in mouse lung with H7N9 influenza A virus infection.

[1]  Nan Huang,et al.  Integrated Analysis of microRNA-mRNA Expression in Mouse Lungs Infected With H7N9 Influenza Virus: A Direct Comparison of Host-Adapting PB2 Mutants , 2020, Frontiers in Microbiology.

[2]  Sebastian Kadener,et al.  Past, present, and future of circRNAs , 2019, The EMBO journal.

[3]  G. Chang,et al.  Expression patterns of novel circular RNAs in chicken cells after avian leukosis virus subgroup J infection. , 2019, Gene.

[4]  Roshini Sathiaseelan,et al.  Long non-coding RNA PSMB8-AS1 regulates influenza virus replication , 2019, RNA biology.

[5]  L. Jin,et al.  Profile analysis of circRNAs induced by porcine endemic diarrhea virus infection in porcine intestinal epithelial cells , 2018, Virology.

[6]  W. Barclay,et al.  Host and viral determinants of influenza A virus species specificity , 2018, Nature Reviews Microbiology.

[7]  G. Chang,et al.  Circular RNA and mRNA profiling reveal competing endogenous RNA networks during avian leukosis virus, subgroup J-induced tumorigenesis in chickens , 2018, PloS one.

[8]  Jun Lu,et al.  CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13 , 2018, Cell Death & Disease.

[9]  Jiandong Shi,et al.  Unique expression signatures of circular RNAs in response to DNA tumor virus SV40 infection , 2017, Oncotarget.

[10]  Suyun Huang,et al.  Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis , 2017, Journal of the National Cancer Institute.

[11]  Hai-Feng Liang,et al.  Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. , 2017, American journal of cancer research.

[12]  R. Randall,et al.  Influenza virus activation of the interferon system , 2015, Virus research.

[13]  David K. Smith,et al.  Dual E627K and D701N mutations in the PB2 protein of A(H7N9) influenza virus increased its virulence in mammalian models , 2015, Scientific Reports.

[14]  Y. Bao,et al.  MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus , 2015, Molecular Genetics and Genomics.

[15]  Tokiko Watanabe,et al.  Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in mammalian hosts , 2015, Scientific Reports.

[16]  F. Zhao,et al.  CIRI: an efficient and unbiased algorithm for de novo circular RNA identification , 2015, Genome Biology.

[17]  Petar Glažar,et al.  circBase: a database for circular RNAs , 2014, RNA.

[18]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[19]  Huachen Zhu,et al.  Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts , 2014, Journal of Virology.

[20]  Hua Yang,et al.  New World Bats Harbor Diverse Influenza A Viruses , 2013, PLoS pathogens.

[21]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[22]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[23]  Jorng-Tzong Horng,et al.  An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs , 2013, BMC Bioinformatics.

[24]  Giovanni Parmigiani,et al.  Integrating diverse genomic data using gene sets , 2011, Genome Biology.

[25]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[26]  P. Palese,et al.  Why Do Influenza Virus Subtypes Die Out? A Hypothesis , 2011, mBio.

[27]  H. Klenk,et al.  The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Webster,et al.  Molecular Basis of Replication of Duck H5N1 Influenza Viruses in a Mammalian Mouse Model , 2005, Journal of Virology.

[29]  Yoshihiro Kawaoka,et al.  PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. , 2004, Virology.

[30]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[31]  T. Horie,et al.  p38 Mitogen‐activated protein kinase and c‐Jun‐NH2‐terminal kinase regulate interleukin‐8 and RANTES production in hyperosmolarity stimulated human bronchial epithelial cells , 2002, Respirology.

[32]  Niall Johnson,et al.  Updating the Accounts: Global Mortality of the 1918-1920 "Spanish" Influenza Pandemic , 2002, Bulletin of the history of medicine.

[33]  R. Webster,et al.  A DNA transfection system for generation of influenza A virus from eight plasmids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  Jørgen Kjems,et al.  Circular RNAs: Identification, biogenesis and function. , 2016, Biochimica et biophysica acta.

[36]  S. Pleschka Overview of influenza viruses. , 2013, Current topics in microbiology and immunology.

[37]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..