On the convergence of Shannon differential entropy, and its connections with density and entropy estimation

[1]  Yuhai Wu,et al.  Statistical Learning Theory , 2021, Technometrics.

[2]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[3]  Shrikanth Narayanan,et al.  Information divergence estimation based on data-dependent partitions , 2010 .

[4]  Shrikanth S. Narayanan,et al.  Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications , 2010, IEEE Transactions on Signal Processing.

[5]  R. Yeung,et al.  On the Discontinuity of the Shannon Information Measures , 2009, IEEE Transactions on Information Theory.

[6]  Patricio Parada,et al.  On convergence properties of Shannon entropy , 2007, Probl. Inf. Transm..

[7]  Raymond W. Yeung,et al.  The Interplay Between Entropy and Variational Distance , 2007, IEEE Transactions on Information Theory.

[8]  Shrikanth S. Narayanan,et al.  Universal Consistency of Data-Driven Partitions for Divergence Estimation , 2007, 2007 IEEE International Symposium on Information Theory.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Qing Wang,et al.  Divergence estimation of continuous distributions based on data-dependent partitions , 2005, IEEE Transactions on Information Theory.

[11]  I. Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[12]  Edward C. van der Meulen,et al.  Optimization of Barron density estimates , 2001, IEEE Trans. Inf. Theory.

[13]  Igor Vajda,et al.  Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.

[14]  Edward C. van der Meulen,et al.  About the Asymptotic Accuracy of Barron Density Estimates , 1998, IEEE Trans. Inf. Theory.

[15]  László Györfi,et al.  Density estimation consistent in information divergence , 1994 .

[16]  László Györfi,et al.  Distribution estimation consistent in total variation and in two types of information divergence , 1992, IEEE Trans. Inf. Theory.

[17]  L. Györfi,et al.  Density-free convergence properties of various estimators of entropy , 1987 .

[18]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[19]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[20]  M. Gessaman A Consistent Nonparametric Multivariate Density Estimator Based on Statistically Equivalent Blocks , 1970 .

[21]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[22]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[23]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[24]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[25]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .

[26]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[27]  L. Györfi,et al.  Distribution Estimates Consistent in χ2-Divergence , 1998 .

[28]  L. Györfi,et al.  Nonparametric entropy estimation. An overview , 1997 .

[29]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[30]  G. Lugosi,et al.  Consistency of Data-driven Histogram Methods for Density Estimation and Classification , 1996 .

[31]  A. Nobel Histogram regression estimation using data-dependent partitions , 1996 .

[32]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[33]  J. A. Vísek,et al.  Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes , 1987 .

[34]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[35]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.