On the convergence of Shannon differential entropy, and its connections with density and entropy estimation
暂无分享,去创建一个
[1] Yuhai Wu,et al. Statistical Learning Theory , 2021, Technometrics.
[2] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[3] Shrikanth Narayanan,et al. Information divergence estimation based on data-dependent partitions , 2010 .
[4] Shrikanth S. Narayanan,et al. Nonproduct Data-Dependent Partitions for Mutual Information Estimation: Strong Consistency and Applications , 2010, IEEE Transactions on Signal Processing.
[5] R. Yeung,et al. On the Discontinuity of the Shannon Information Measures , 2009, IEEE Transactions on Information Theory.
[6] Patricio Parada,et al. On convergence properties of Shannon entropy , 2007, Probl. Inf. Transm..
[7] Raymond W. Yeung,et al. The Interplay Between Entropy and Variational Distance , 2007, IEEE Transactions on Information Theory.
[8] Shrikanth S. Narayanan,et al. Universal Consistency of Data-Driven Partitions for Divergence Estimation , 2007, 2007 IEEE International Symposium on Information Theory.
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] Qing Wang,et al. Divergence estimation of continuous distributions based on data-dependent partitions , 2005, IEEE Transactions on Information Theory.
[11] I. Csiszár,et al. Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.
[12] Edward C. van der Meulen,et al. Optimization of Barron density estimates , 2001, IEEE Trans. Inf. Theory.
[13] Igor Vajda,et al. Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.
[14] Edward C. van der Meulen,et al. About the Asymptotic Accuracy of Barron Density Estimates , 1998, IEEE Trans. Inf. Theory.
[15] László Györfi,et al. Density estimation consistent in information divergence , 1994 .
[16] László Györfi,et al. Distribution estimation consistent in total variation and in two types of information divergence , 1992, IEEE Trans. Inf. Theory.
[17] L. Györfi,et al. Density-free convergence properties of various estimators of entropy , 1987 .
[18] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[19] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[20] M. Gessaman. A Consistent Nonparametric Multivariate Density Estimator Based on Statistically Equivalent Blocks , 1970 .
[21] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[22] Solomon Kullback,et al. Information Theory and Statistics , 1960 .
[23] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[24] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[25] H. Scheffé. A Useful Convergence Theorem for Probability Distributions , 1947 .
[26] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[27] L. Györfi,et al. Distribution Estimates Consistent in χ2-Divergence , 1998 .
[28] L. Györfi,et al. Nonparametric entropy estimation. An overview , 1997 .
[29] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[30] G. Lugosi,et al. Consistency of Data-driven Histogram Methods for Density Estimation and Classification , 1996 .
[31] A. Nobel. Histogram regression estimation using data-dependent partitions , 1996 .
[32] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[33] J. A. Vísek,et al. Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes , 1987 .
[34] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[35] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.