Stabilizer quantum codes from J-affine variety codes and a new Steane-like enlargement

New stabilizer codes with parameters better than the ones available in the literature are provided in this work, in particular quantum codes with parameters $$[[127,63, {\ge }12]]_2$$[[127,63,≥12]]2 and $$[[63,45, {\ge }6]]_4$$[[63,45,≥6]]4 that are records. These codes are constructed with a new generalization of the Steane’s enlargement procedure and by considering orthogonal subfield-subcodes—with respect to the Euclidean and Hermitian inner product—of a new family of linear codes, the J-affine variety codes.

[1]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[4]  植松 友彦,et al.  Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .

[5]  Emmanuela Orsini,et al.  Improved decoding of affine-variety codes , 2011, 1102.4186.

[6]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[7]  G. L. Guardia Constructions of new families of nonbinary quantum codes , 2009 .

[8]  R. Matsumoto,et al.  Constructing Quantum Error-Correcting Codes for pm-State System from Classical Error-Correcting Codes , 1999, quant-ph/9911011.

[9]  Fabián A. Chudak,et al.  Experimental determination of Ramsey numbers. , 2012, Physical Review Letters.

[10]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  Olav Geil,et al.  Feng-Rao decoding of primary codes , 2013, Finite Fields Their Appl..

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[15]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[16]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[18]  Olav Geil,et al.  Evaluation codes from order domain theory , 2008, Finite Fields Their Appl..

[19]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[20]  M. Hamada Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction , 2008, IEEE Transactions on Information Theory.

[21]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[22]  Zhi Ma,et al.  A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.

[23]  Reginaldo Palazzo Júnior,et al.  Constructions of new families of nonbinary CSS codes , 2010, Discret. Math..

[24]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[25]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[26]  Carlos Galindo,et al.  Quantum codes from affine variety codes and their subfield-subcodes , 2014, Designs, Codes and Cryptography.

[27]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[28]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[30]  Carlos Galindo,et al.  New quantum codes from evaluation and matrix-product codes , 2014, Finite Fields Their Appl..

[31]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Simon Litsyn,et al.  Quantum error detection II: Bounds , 1999, IEEE Trans. Inf. Theory.

[33]  J. Smolin,et al.  Putting "Quantumness" to the Test , 2013 .

[34]  J. Fitzgerald,et al.  Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..

[35]  D. Dieks Communication by EPR devices , 1982 .

[36]  D. DiVincenzo,et al.  Quantum Error-Correcting Codes , 1998 .

[37]  Simon Litsyn,et al.  Quantum error detection I: Statement of the problem , 1999, IEEE Trans. Inf. Theory.

[38]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[39]  Carlos Galindo,et al.  Evaluation codes defined by finite families of plane valuations at infinity , 2014, Des. Codes Cryptogr..

[40]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[41]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[42]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  Qing Chen,et al.  All the Stabilizer Codes of Distance 3 , 2009, IEEE Transactions on Information Theory.

[44]  Carlos Galindo,et al.  δ‐sequences and evaluation codes defined by plane valuations at infinity , 2007, ArXiv.

[45]  R. Matsumoto,et al.  Lower bound for the quantum capacity of a discrete memoryless quantum channel , 2001, quant-ph/0105151.

[46]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[47]  G. Gadioli La Guardia,et al.  On the Construction of Nonbinary Quantum BCH Codes , 2012, IEEE Transactions on Information Theory.

[48]  San Ling,et al.  CSS-Like Constructions of Asymmetric Quantum Codes , 2012, IEEE Transactions on Information Theory.

[49]  Maria Bras-Amorós,et al.  Duality for some families of correction capability optimized evaluation codes , 2008, Adv. Math. Commun..

[50]  O. Geil Evaluation Codes from an Affine Variety Code Perspective1 , 2008 .

[51]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.