Carbon budget for the pelagic food web of the euphotic zone in a boreal lake (Lake Pääjärvi)

A carbon budget for the pelagic euphotic zone of a mesohumic, boreal lake was constructed, on the basis of enclosure experiments, in which effects of pulses of humic matter and phosphorus were studied. Although production of phytoplankton and bacteria was enchanced by additions of phosphorus, and of phosphorus and humic matter together, the effects on zooplankton were less clear. The modest response of metazooplankton was partly due to the short time of the experiments, but it was also due to loss of carbon through respiration in several steps of the microbial food chain. Protozoans had key roles as grazers in the system; heterotrophic nanoflagellates were the most important grazers of bacteria, whereas ciliates were more important algal grazers than metazooplankton. Indirect evidence suggested that ciliates formed a considerable proportion of the food of metazooplankton. The amount of carbon released through respiration exceeded the sum of that fixed by primary producers and lost through sedimentation. If the climate change in the boreal zone increases loading of nutrients and humic matter into lakes, this imbalance between respiration and fixation of carbon can be expected to increase. Resume : Nous avons Otabli le bilan du carbone pour la zone euphotique pOlagique diun lac borOal mOsohumique, ‡ liaide diexpOriences en enclos dans lesquelles nous avons OtudiO les effets de poussOes de matire humique et de phosphore. Bien que la production phytoplanctonique et bactOrienne ait OtO accrue par liajout de phosphore, et de phosphore et de matire humique ensemble, les effets sur le zooplancton ont OtO moins Ovidents. La rOponse modeste du mOtazooplancton Otait due en partie ‡ la courte durOe des expOriences, mais aussi ‡ la perte de carbone par la respiration ‡ plusieurs Otapes de la chaOne trophique microbienne. Les protozoaires jouaient un rUle clO en tant que brouteurs dans le systme; les nanoflagellOs hOtOrotrophes Otaient les plus importants brouteurs de bactOries, tandis que les ciliOs Otaient des brouteurs dialgues plus importants que le mOtazooplancton. Des donnOes indirectes permettent de penser que les ciliOs formaient une proportion considOrable de la nourriture du mOtazooplancton. La quantitO de carbone libOrO par la respiration dOpassait la somme de celui qui Otait fixO par les producteurs primaires et perdu par la sOdimentation. (Traduit par la ROdaction)

[1]  G. Kling,et al.  Fractionation of stable isotopes (13C, 15N) in the food web of a humic lake , 1993 .

[2]  L. Holtby,et al.  Construction and validation of a body-length-based model for the prediction of cladoceran community filtering rates , 1986 .

[3]  R. S. Stemberger A General Approach to the Culture of Planktonic Rotifers , 1981 .

[4]  D. Klaveness,et al.  Growth of freshwater ciliates offered planktonic algae as food , 1987 .

[5]  J. Fuhrman,et al.  Growth efficiencies of freshwater bacterioplankton , 1992, Microbial Ecology.

[6]  A. Duncan,et al.  Methods for the estimation of production of aquatic animals , 1972 .

[7]  T. Fenchel The ecology of marine microbenthos III. The reproductive potential of ciliates , 1968 .

[8]  Roger I. Jones,et al.  The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland , 1985 .

[9]  J. Stockner,et al.  Virus-Like Particles in an Ultra-Oligotrophic Lake on Vancouver Island, British Columbia , 1990 .

[10]  Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake , 1992 .

[11]  A. Duncan,et al.  The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies , 1985 .

[12]  D. Lynn,et al.  The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role , 1988 .

[13]  Michael T. Brett,et al.  Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters , 1990 .

[14]  K. Y. Bφrshiem Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawatr. , 1987 .

[15]  R. M. Pinto-Coelho,et al.  Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake , 1990 .

[16]  N. Kroer Bacterial growth efficiency on natural dissolved organic matter , 1993 .

[17]  H. Kuosa,et al.  Nutrient limitation and grazing control of the Baltic plankton community during annual succession , 1993 .

[18]  M. Pace,et al.  The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community1 , 1981 .

[19]  G. Likens,et al.  Structure and Function of the Zooplankton Community of Mirror Lake, New Hampshire , 1979 .

[20]  T. Fenchel,et al.  Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists , 1987 .

[21]  T. Weisse,et al.  Relations among the components of autotrophic and heterotrophic plankton during the seasonal cycle 1987 in Lake Constance , 1991 .

[22]  G. Fahnenstiel,et al.  Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics , 1992 .

[23]  Francesc Peters Prediction of planktonic protistan grazing rates , 1994 .

[24]  J. Lay,et al.  Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus‐based food webs , 1988 .

[25]  J. Vijverberg,et al.  Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands , 1980 .

[26]  L. Paasivirta,et al.  The ecosystem of the oligotrophic Lake Pääjärvi 3. Secondary production and an ecological energy budget of the lake: With 1 figure and 1 table in the text , 1981 .

[27]  M. Pace,et al.  Planktonic community structure determines the fate of bacterial production in a temperate lake , 1990 .

[28]  A. Jensen,et al.  Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria , 1989 .

[29]  L. Tranvik,et al.  Bacterial Growth in Mixed Cultures on Dissolved Organic Carbon from Humic and Clear Waters , 1987, Applied and environmental microbiology.

[30]  G. Bratbak,et al.  Incorporation of viruses into the budget of microbial C-transfer A first approach , 1992 .

[31]  H. Kuosa,et al.  Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic , 1993 .

[32]  J. J. Gilbert,et al.  Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing1 , 1982 .

[33]  K. Porter,et al.  Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community , 1989 .

[34]  B. Finlay Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch , 1978 .

[35]  J. Garnier,et al.  Contribution of grazing in phytoplankton overall losses in a shallow French lake , 1991 .

[36]  L. Arvola,et al.  Effects of phosphorus and allochthonous humic matter enrichment on metabolic processes and community structure of plankton in a boreal lake (Lake Pääjärvi) , 1996 .

[37]  C. Pedrós-Alió,et al.  The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake , 1983 .

[38]  R. Sanders,et al.  Planktonic protozoa and metazoa: predation, food quality and population control , 1993 .

[39]  M. Simon,et al.  Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance , 1987 .

[40]  D. Stoecker,et al.  Predation on Protozoa: its importance to zooplankton , 1990 .

[41]  M. Boer,et al.  Greenhouse impact in Fennoscandia-preliminary findings of a European workshop on the effects of climatic change. , 1990 .

[42]  U. Larsson,et al.  Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient , 1982 .

[43]  R. Peters,et al.  Patterns in planktonic P:R ratios in lakes: Influence of lake trophy and dissolved organic carbon , 1994 .

[44]  P. Eloranta Phytoplankton structure in different lake types in central Finland , 1986 .

[45]  J. Laybourn-Parry,et al.  Protozoan plankton ecology , 1992 .

[46]  L. Holtby,et al.  Cladoceran filtering rate: body length relationships for bacterial and large algal particles , 1986 .

[47]  R. Coffin,et al.  Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization , 1993 .

[48]  K. Salonen,et al.  On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters , 2004, Oecologia.

[49]  T. Tulonen Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate , 1993, Microbial Ecology.

[50]  J. C. Goldman,et al.  Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain , 1985 .

[51]  T. Berman,et al.  High abundance of picoplankton-ingesting ciliates during late fall in Lake Kinneret, Israel , 1991 .

[52]  G. Fahnenstiel,et al.  Planktonic Protozoa in Lakes Huron and Michigan: Seasonal Abundance and Composition of Ciliates and Dinoflagellates , 1990 .

[53]  J. T. Turner,et al.  Ecology of planktonic ciliates in marine food webs , 1992 .

[54]  W. Taylor,et al.  A comparison of estimates of productivity and consumption by zooplankton for planktonic ciliates in Lake Ontario , 1991 .

[55]  J. Meyer,et al.  Bacterial growth on macrophyte leachate and fate of bacterial production1 , 1986 .

[56]  P. T. Fenchel Ecology of Protozoa , 1987, Brock/Springer Series in Contemporary Bioscience.

[57]  M. Pace,et al.  Grazing by zooplankton and its relationship to community structure , 1992 .

[58]  Michael E. Sieracki,et al.  Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton , 1992 .

[59]  T. Andersen,et al.  Carbon metabolism in a humic lake: Pool sires and cycling through zooplankton , 1990 .

[60]  P. Kankaala The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake , 1988 .

[61]  H. Bottrell A review of some problems in zooplankton production studies , 1976 .

[62]  C. Goldman,et al.  Differential effects of zooplankton species on ciliate community structure , 1994 .

[63]  L. Holtby,et al.  Zooplankton filtering rates: Error due to loss of radioisotopic label in chemically preserved samples , 1981 .

[64]  P. Servais,et al.  Estimating bacterial mortality by the disappearance of 3H-labeled intracellular DNA , 1989 .

[65]  H. Müller,et al.  Maximum growth rates of aquatic ciliated protozoa : the dependence on body size and temperature reconsidered , 1993 .

[66]  M. Pace,et al.  Bacterial production in fresh and saltwater ecosystems: a cross-system overview , 1988 .

[67]  F. Wulff,et al.  Experimental studies on temperature-dependent embryonic and postembryonic developmental rates of Bosmina longispina maritima (Cladocera) in the Baltic , 1981 .

[68]  D. O. Hessen,et al.  Differential grazing and resource utilization of zooplankton in a humic lake , 1989 .

[69]  L. Tranvik Bacterioplankton Growth on Fractions of Dissolved Organic Carbon of Different Molecular Weights from Humic and Clear Waters , 1990, Applied and environmental microbiology.

[70]  J. Stockner,et al.  Microbial Food Webs in Freshwater Planktonic Ecosystems , 1988 .

[71]  E. Stoermer,et al.  The importance of zooplankton‐protozoan trophic couplings in Lake Michigan , 1991 .