In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst

[1]  Jiayue Xu,et al.  Step-Scheme Photocatalyst of CsPbBr3 Quantum Dots/BiOBr Nanosheets for Efficient CO2 Photoreduction. , 2022, Inorganic chemistry.

[2]  Dongen Zhang,et al.  Construction of melamine foam–supported WO3/CsPbBr3 S–scheme heterojunction with rich oxygen vacancies for efficient and long–period CO2 photoreduction in liquid–phase H2O environment , 2022, Chemical Engineering Journal.

[3]  Jiayue Xu,et al.  A novel S-scheme heterojunction of CsPbBr3 nanocrystals/AgBr nanorods for artificial photosynthesis , 2022, Chemical Engineering Journal.

[4]  Jiaguo Yu,et al.  Emerging S‐Scheme Photocatalyst , 2021, Advanced materials.

[5]  Lei Cheng,et al.  2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation , 2021, Applied Catalysis B: Environmental.

[6]  Jiayue Xu,et al.  Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction , 2021, Chemical Engineering Journal.

[7]  Jiayue Xu,et al.  Artificial Photosynthesis over Metal Halide Perovskites: Achievements, Challenges, and Prospects. , 2021, The journal of physical chemistry letters.

[8]  Jiayue Xu,et al.  CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction , 2021 .

[9]  Jiayue Xu,et al.  Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction , 2021 .

[10]  Liying Huang,et al.  Enhanced photocatalytic antibacterial and degradation performance by n-p type 0D/2D SnO2−x/BiOI photocatalyst under LED light , 2021, Chemical Engineering Journal.

[11]  Z. Chen,et al.  Interfacial Engineering of Bi19Br3S27 Nanowires Promotes Metallic Photocatalytic CO2 Reduction Activity under Near-Infrared Light Irradiation. , 2021, Journal of the American Chemical Society.

[12]  Xudong Wang,et al.  Plasmonic CsPbBr3–Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction , 2021 .

[13]  X. Wen,et al.  Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4. , 2020, Angewandte Chemie.

[14]  G. Samu,et al.  Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces , 2020, Journal of the American Chemical Society.

[15]  H. Bi,et al.  A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−Br heterojunction with enhanced visible-light photocatalytic activity , 2020 .

[16]  Qinghua Zhang,et al.  Photocatalytic CO2 Reduction to CO over Ni Single Atoms Supported on Defect‐Rich Zirconia , 2020, Advanced Energy Materials.

[17]  Jiaguo Yu,et al.  Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction , 2020, Nature Communications.

[18]  Xudong Wang,et al.  Z‐Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic CO2 Reduction , 2020, Advanced Functional Materials.

[19]  Dan Wu,et al.  Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets , 2020 .

[20]  M. Roeffaers,et al.  Direct Z-Scheme Heterojunction of Semi-coherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force. , 2020, ACS nano.

[21]  Zhengquan Li,et al.  Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 Quantum Dots/Bi2WO6 Nanosheets for Efficient Photocatalytic CO2 Reduction. , 2020, ACS applied materials & interfaces.

[22]  Fengli Qu,et al.  Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications. , 2020, Small.

[23]  Jiale Xie,et al.  Enhanced Performance of Perovskite Solar Cells via Low‐Temperature‐Processed Mesoporous SnO2 , 2020, Advanced Materials Interfaces.

[24]  Jiaguo Yu,et al.  Designing 0D/2D S-scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. , 2020, Angewandte Chemie.

[25]  Ruiyong Chen,et al.  First-principles calculations and experimental investigation on SnO2@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. , 2019, Journal of colloid and interface science.

[26]  Xin Jiang,et al.  High-Response Room-Temperature NO2 Sensor and Ultrafast Humidity Sensor Based on SnO2 with Rich Oxygen Vacancy. , 2019, ACS applied materials & interfaces.

[27]  Xinming Wang,et al.  Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction , 2019, Chemical Engineering Journal.

[28]  Mietek Jaroniec,et al.  Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. , 2019, Chemical reviews.

[29]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[30]  Yang-Fan Xu,et al.  Enhanced Solar-Driven Gaseous CO2 Conversion by CsPbBr3 Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst , 2018, ACS Applied Energy Materials.

[31]  Jiaguo Yu,et al.  CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction , 2018, Applied Catalysis B: Environmental.

[32]  Z. Zou,et al.  Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4 , 2018 .

[33]  T. Ishihara,et al.  Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity. , 2018, Journal of the American Chemical Society.

[34]  Jiaguo Yu,et al.  Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance , 2018 .

[35]  M. Jaroniec,et al.  Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities , 2018, Advanced materials.

[36]  D. Zhao,et al.  Sensors: Pt Nanoparticles Sensitized Ordered Mesoporous WO3 Semiconductor: Gas Sensing Performance and Mechanism Study (Adv. Funct. Mater. 6/2018) , 2018 .

[37]  Ting Fei,et al.  Construction of SnO2/graphene-like g-C3N4 with enhanced visible light photocatalytic activity , 2017 .

[38]  Jinhua Ye,et al.  Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation , 2017 .

[39]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[40]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[41]  Jae-Hun Kim,et al.  Realization of ppb-Scale Toluene-Sensing Abilities with Pt-Functionalized SnO2-ZnO Core-Shell Nanowires. , 2015, ACS applied materials & interfaces.

[42]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[43]  Thorsten Wagner,et al.  Mesoporous materials as gas sensors. , 2013, Chemical Society reviews.

[44]  W. Dong,et al.  Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst , 2021 .