Mathematical Vernacular and Conceptual Well-Formedness in Mathematical Language

This paper investigates the semantics of mathematical concepts in a type theoretic framework with coercive subtyping. The typetheoretic analysis provides a formal semantic basis in the design and implementation of Mathematical Vernacular (MV), a natural language suitable for interactive development of mathematics with the support of the current theorem proving technology. The idea of semantic well-formedness in mathematical language is motivated with examples. A formal system based on a notion of conceptual category is then presented, showingho w type checkingsupp orts our notion of well-formedness. The power of this system is then extended by incorporatinga notion of subcategory, usingideas from a more general theory of coercive subtyping, which provides the mechanisms for modellingcon ventional abbreviations in mathematics. Finally, we outline how this formal work can be used in an implementation of MV.

[1]  Bengt Nordström,et al.  The ALF Proof Editor and Its Proof Engine , 1994, TYPES.

[2]  Aarne Ranta Type-Theoretical Grammar , 1995 .

[3]  Zhaohui Luo,et al.  Mathematical Vernacular in Type Theory-based Proof Assistants , 1998 .

[4]  de Ng Dick Bruijn,et al.  The Mathematical Vernacular, A Language for Mathematics with Typed Sets , 1994 .

[5]  Tom Maibaum,et al.  TAPSOFT'91: Proceedings of the International Joint Conference on Theory and Practice of Software Development, Brighton, UK, April 8-12, 1991, Volume 1: Colloquium on Trees in Algebra and Programming (CAAP'91) , 1991 .

[6]  F. Dick A survey of the project Automath , 1980 .

[7]  Ted Briscoe,et al.  Semi-productive Polysemy and Sense Extension , 1995, J. Semant..

[8]  Hugo Herbelin,et al.  The Coq proof assistant : reference manual, version 6.1 , 1997 .

[9]  Ray Jackendoff,et al.  The Architecture of the Language Faculty , 1996 .

[10]  Zhaohui Luo,et al.  Program specification and data refinement in type theory , 1991, Mathematical Structures in Computer Science.

[11]  Zhaohui Luo,et al.  Some Algorithmic and Proof-Theoretical Aspects of Coercive Subtyping , 1996, TYPES.

[12]  Zhaohui Luo,et al.  A Higher-Order Calculus and Theory Abstraction , 1991, Inf. Comput..

[13]  Aarne Ranta Context-Relative Syntactic Categories and the Formalization of Mathematical Text , 1995, TYPES.

[14]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[15]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[16]  Zhaohui Luo,et al.  Program Speciication and Data Reenement in Type Theory , 1991 .

[17]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[18]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[19]  James McKinna,et al.  Checking Algorithms for Pure Type Systems , 1994, TYPES.

[20]  Aarne Ranta,et al.  Type-Theoretical Interpretation and Generalization of Phrase Structure Grammar , 1995, Log. J. IGPL.

[21]  Zhaohui Luo,et al.  Coercive Subtyping , 1995 .

[22]  Rod M. Burstall,et al.  Deliverables: A Categorial Approach to Program Development in Type Theory , 1993, MFCS.

[23]  Zhaohui Luo,et al.  Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.

[24]  Amokrane Saïbi Typing algorithm in type theory with inheritance , 1997, POPL '97.

[25]  Zhaohui Luo,et al.  Coercive Subtyping in Type Theory , 1996, CSL.