Dr. Probe: A software for high-resolution STEM image simulation.

The Dr. Probe software for multislice simulations of STEM images is introduced, and reference is given of the applied methods. Major program features available with the graphical user interface version are demonstrated by means of a few examples for bright-field and dark-field STEM imaging as well as simulations of diffraction patterns. The numerical procedure applied for the simulation of thermal-diffuse scattering by the frozen-lattice approach is described in detail. Intensity variations occurring in simulations with atomic-column resolution due to frozen-lattice variations are discussed in the context of atom counting. It is found that a significant averaging over many lattice configurations with different random atomic displacements is required to prevent atom-counting bias from simulations. A strategy is developed for the assessment of the amount of required averaging based on the estimated signal variance and the expected signal gain per atom in a column.

[1]  G. Kostorz,et al.  Quantitative characterisation of chemical inhomogeneities in Al-Ag using high-resolution Z-contrast STEM. , 2003, Ultramicroscopy.

[2]  Stephen J. Pennycook,et al.  Z-contrast stem for materials science , 1989 .

[3]  G. Kothleitner,et al.  On the quantitativeness of EDS STEM. , 2015, Ultramicroscopy.

[4]  Joachim Mayer,et al.  Nanosized Conducting Filaments Formed by Atomic-Scale Defects in Redox-Based Resistive Switching Memories , 2017 .

[5]  A. Kirfel,et al.  New analytical scattering‐factor functions for free atoms and ions , 1995 .

[6]  Naoya Shibata,et al.  Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.

[7]  P D Nellist,et al.  Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images. , 2013, Ultramicroscopy.

[8]  Susanne Stemmer,et al.  Position averaged convergent beam electron diffraction: theory and applications. , 2010, Ultramicroscopy.

[9]  Detlef Hommel,et al.  Composition mapping in InGaN by scanning transmission electron microscopy. , 2011, Ultramicroscopy.

[10]  A. Weickenmeier,et al.  Computation of absorptive form factors for high-energy electron diffraction , 1991 .

[11]  K. Ishizuka,et al.  A new theoretical and practical approach to the multislice method , 1977 .

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[14]  S D Findlay,et al.  Modelling the inelastic scattering of fast electrons. , 2015, Ultramicroscopy.

[15]  F. Allen,et al.  The crystallographic information file (CIF) : a new standard archive file for crystallography , 1991 .

[16]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[17]  C. Dwyer,et al.  Simulation of scanning transmission electron microscope images on desktop computers. , 2010, Ultramicroscopy.

[18]  Juri Barthel,et al.  Direct imaging of single Au atoms within GaAs nanowires. , 2012, Nano letters.

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  Susanne Stemmer,et al.  Quantitative atomic resolution scanning transmission electron microscopy. , 2008, Physical review letters.

[21]  D. Muller,et al.  Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. , 2006, Ultramicroscopy.

[22]  Peter Hartel,et al.  Advancing the Hexapole Cs-Corrector for the Scanning Transmission Electron Microscope , 2006, Microscopy and Microanalysis.

[23]  Naoya Shibata,et al.  New area detector for atomic-resolution scanning transmission electron microscopy. , 2010, Journal of electron microscopy.

[24]  S Bals,et al.  Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. , 2009, Ultramicroscopy.

[25]  Vincenzo Grillo,et al.  Influence of the static atomic displacement on atomic resolution Z-contrast imaging , 2008 .

[26]  Juri Barthel,et al.  Periodic Cation Segregation in Cs0.44[Nb2.54W2.46O14] Quantified by High-Resolution Scanning Transmission Electron Microscopy , 2014, Microscopy and Microanalysis.

[27]  Russell F. Loane,et al.  Thermal vibrations in convergent‐beam electron diffraction , 1991 .

[28]  Bryan C. Chakoumakos,et al.  Ru3Sn7 with the Ir3Ge7 structure-type , 1998 .

[29]  R. E. Dunin-Borkowski,et al.  Surface reconstructions and related local properties of a BiFeO3 thin film , 2017, Scientific Reports.

[30]  Pierre Stadelmann,et al.  EMS-A software package for electron diffraction analysis and HREM image simulation in materials science , 1987 .

[31]  Benjamin Berkels,et al.  Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts , 2014, Nature Communications.

[32]  Susanne Stemmer,et al.  Standardless atom counting in scanning transmission electron microscopy. , 2010, Nano letters.

[33]  S D Findlay,et al.  Thermal diffuse scattering in transmission electron microscopy. , 2011, Ultramicroscopy.

[34]  Adrian Avramescu,et al.  Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images. , 2009, Ultramicroscopy.

[35]  Paul N. Swarztrauber,et al.  Vectorizing the FFTs , 1982 .

[36]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[37]  P D Nellist,et al.  Optimal ADF STEM imaging parameters for tilt-robust image quantification. , 2015, Ultramicroscopy.

[38]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[39]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[40]  D. Van Dyck,et al.  Multislice Method for Large Beam Tilt with Application to HOLZ Effects in Triclinic and Monoclinic Crystals , 1997 .

[41]  J. M. Cowley,et al.  The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .

[42]  O'Keefe,et al.  ADVANCES IN HIGH-RESOLUTION IMAGE SIMULATION , 1988 .

[43]  J. M. LeBeau,et al.  Detector non-uniformity in scanning transmission electron microscopy. , 2013, Ultramicroscopy.

[44]  Ondrej L. Krivanek,et al.  Towards sub-Å electron beams , 1999 .