Dry etch fabrication of porous silicon using xenon difluoride

The authors report the fabrication of porous silicon material using a xenon difluoride (XeF2) dry etching technique. Using a XeF2 fabrication process, porous silicon can be formed selectively on silicon by employing a standard hard-baked photoresist layer as a masking layer. The authors demonstrate porous silicon with different pore sizes and configurations rendering this material as an attractive candidate for a wide spectrum of potential applications. The pore size, porosity and thickness of the various developed porous silicon samples were characterised with electron microscopy and optical reflectance measurements. This XeF2 etching technique offers flexible and straightforward fabrication of porous silicon and could allow simple monolithic integration of porous silicon devices with microelectronic circuitry, following the current trend of integrated microsystems.

[1]  Mohammad Ilyas,et al.  Smart Dust , 2006 .

[2]  B. E. C. A. dos Santos,et al.  A new method for luminescent porous silicon formation: reaction‐induced vapor‐phase stain etch , 2005 .

[3]  R A Williams,et al.  Covalent immobilization of protein monolayers for biosensor applications. , 1994, Biosensors & bioelectronics.

[4]  Alain Giani,et al.  Porous silicon layers used for gas sensor applications , 1997 .

[5]  Klavs F. Jensen,et al.  Isotropic etching of silicon in fluorine gas for MEMS micromachining , 2007 .

[6]  Yi Li,et al.  Porous Silicon Microcavities for Biosensing Applications , 2000 .

[7]  Priyabrata Mukherjee,et al.  Porous silicon‐based scaffolds for tissue engineering and other biomedical applications , 2005 .

[8]  Claude Lévy-Clément,et al.  Optimization of porous silicon reflectance for silicon photovoltaic cells , 1999 .

[9]  James R Engstrom,et al.  The adsorption and reaction of fluorine on the Si(100) surface , 1989 .

[10]  Hans Lüth,et al.  Investigation and design of optical properties of porosity superlattices , 1995 .

[11]  H. Lüth,et al.  Porosity superlattices: a new class of Si heterostructures , 1994 .

[12]  V. Kruchinin,et al.  Development of Si(100) surface roughness at the initial stage of etching in F2 and XeF2 gases: ellipsometric study , 1999 .

[13]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[14]  J. Escorcia-García,et al.  Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon , 2009 .

[15]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[16]  Andreas Janshoff,et al.  Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing , 1998 .

[17]  Cross-section TEM and Optical Characterization of Porous Silicon Multilayer Stacks , 1998 .

[18]  M. Eurlings,et al.  Si/XeF2 etching: Reaction layer dynamics and surface roughening , 1996 .

[19]  H. Föll,et al.  Formation and application of porous silicon , 2002 .

[20]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[21]  T. Nakagawa,et al.  Control of structure and optical anisotropy in porous Si by magnetic‐field assisted anodization , 1996 .

[22]  J. Buriak,et al.  Chemical and Biological Applications of Porous Silicon Technology , 2000 .

[23]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[24]  H. F. Winters,et al.  The etching of silicon with XeF2 vapor , 1979 .

[25]  H. Saha,et al.  Porous Silicon-Based Sensors: Prospects and Challenges , 2006 .

[26]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[27]  S. D. Collins,et al.  Porous silicon formation mechanisms , 1992 .

[28]  G. Lammel,et al.  Tunable optical filter of porous silicon as key component for a MEMS spectrometer , 2002 .

[29]  Lorenzo Pavesi,et al.  Random porous silicon multilayers: application to distributed Bragg reflectors and interferential Fabry - Pérot filters , 1997 .