Partition of antimicrobial D-L-α-cyclic peptides into bacterial model membranes.

[1]  E. Goormaghtigh,et al.  Macromolecular assembly and membrane activity of antimicrobial D,L-α-Cyclic peptides. , 2021, Colloids and surfaces. B, Biointerfaces.

[2]  J. Granja,et al.  Double orthogonal click reactions for the development of antimicrobial peptide nanotubes. , 2020, Chemistry.

[3]  E. Goormaghtigh,et al.  Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. , 2020, Colloids and surfaces. B, Biointerfaces.

[4]  K. Rosengren,et al.  Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability , 2020, Frontiers in Microbiology.

[5]  I. Eliseev,et al.  Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics—A Novel Way to Combat Antibiotic Resistance? , 2019, Front. Cell. Infect. Microbiol..

[6]  M. Auger,et al.  Membrane Interactions of Synthetic Peptides with Antimicrobial Potential: Effect of Electrostatic Interactions and Amphiphilicity , 2015, Probiotics and Antimicrobial Proteins.

[7]  Juan M Priegue,et al.  Membrane-targeted self-assembling cyclic peptide nanotubes. , 2015, Current topics in medicinal chemistry.

[8]  M. Prieto,et al.  Exploring homo-FRET to quantify the oligomer stoichiometry of membrane-bound proteins involved in a cooperative partition equilibrium. , 2014, Physical chemistry chemical physics : PCCP.

[9]  P. Balgavý,et al.  Effect of N-dodecyl-N,N-dimethylamine N-oxide on unilamellar liposomes , 2013 .

[10]  S. Funari,et al.  Structural diversity and mode of action on lipid membranes of three lactoferrin candidacidal peptides. , 2013, Biochimica et biophysica acta.

[11]  G. Rádis-Baptista,et al.  Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. , 2012, Biochimica et biophysica acta.

[12]  Luis Castedo,et al.  Transmembrane ion transport by self-assembling α,γ-peptide nanotubes , 2012 .

[13]  Margarida Bastos,et al.  Role of lipids in the interaction of antimicrobial peptides with membranes. , 2012, Progress in lipid research.

[14]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[15]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[16]  H. Sahl,et al.  Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. , 2011, Natural product reports.

[17]  William C. Wimley,et al.  Antimicrobial Peptides: Successes, Challenges and Unanswered Questions , 2011, The Journal of Membrane Biology.

[18]  A. Coutinho,et al.  Influence of lysine N(ε)-trimethylation and lipid composition on the membrane activity of the cecropin A-melittin hybrid peptide CA(1-7)M(2-9). , 2010, The journal of physical chemistry. B.

[19]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[20]  P. Schmieder,et al.  Structures of cyclic, antimicrobial peptides in a membrane‐mimicking environment define requirements for activity , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[21]  M. Prieto,et al.  Energetics and partition of two cecropin-melittin hybrid peptides to model membranes of different composition. , 2008, Biophysical journal.

[22]  B. Ho,et al.  Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. , 2007, Biochimica et biophysica acta.

[23]  Luís M. S. Loura,et al.  Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function , 2006 .

[24]  S. Henriques,et al.  Environmental factors that enhance the action of the cell penetrating peptide pep-1 A spectroscopic study using lipidic vesicles. , 2005, Biochimica et biophysica acta.

[25]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[26]  M. Dathe,et al.  Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. , 2004, Biochemistry.

[27]  Gunnar Svensson,et al.  Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues. , 2004, Journal of the American Chemical Society.

[28]  Manuel Prieto,et al.  Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. , 2003, Biochimica et biophysica acta.

[29]  J. González-Ros,et al.  Intrinsic tyrosine fluorescence as a tool to study the interaction of the shaker B "ball" peptide with anionic membranes. , 2003, Biochemistry.

[30]  A. Clayton,et al.  Site-specific tryptophan fluorescence spectroscopy as a probe of membrane peptide structure and dynamics , 2002, European Biophysics Journal.

[31]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[32]  Juan R. Granja,et al.  Antibacterial agents based on the cyclic d,l-α-peptide architecture , 2001, Nature.

[33]  M. Ghadiri,et al.  Oriented Self-Assembly of Cyclic Peptide Nanotubes in Lipid Membranes , 1998 .

[34]  M. Ghadiri,et al.  Self-Assembling Peptide Nanotubes , 1996 .

[35]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[36]  C. Matthews,et al.  Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants , 1993, Protein science : a publication of the Protein Society.

[37]  B. Valeur,et al.  RESOLUTION OF THE FLUORESCENCE EXCITATION SPECTRUM OF INDOLE INTO THE 1La AND 1Lb EXCITATION BANDS * , 1977, Photochemistry and photobiology.

[38]  G. R. Bartlett Phosphorus assay in column chromatography. , 1959, The Journal of biological chemistry.

[39]  R. Stábeli,et al.  Anuran Antimicrobial Peptides : An alternative for the development of nanotechnological based therapies for multi-drug-resistant infections , 2012 .

[40]  Luís M. S. Loura,et al.  From Lipid Phases to Membrane Protein Organization: Fluorescence Methodologies in the Study of Lipid-Protein Interactions , 2006 .