All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms)

Abstract We prove the Ramsey property for classes of ordered structures with closures and given local properties. This generalises earlier results: the Nesetřil–Rodl Theorem, the Ramsey property of partial orders and metric spaces as well as the authors' Ramsey lift of bowtie-free graphs. We use this framework to solve several open problems and give new examples of Ramsey classes. Among others, we find Ramsey lifts of convexly ordered S-metric spaces and prove the Ramsey theorem for finite models (i.e. structures with both functions and relations) thus providing the ultimate generalisation of the structural Ramsey theorem. Both of these results are natural, and easy to state, yet their proofs involve most of the theory developed here. We also characterise Ramsey lifts of classes of structures defined by finitely many forbidden homomorphisms and extend this to special cases of classes with closures. This has numerous applications. For example, we find Ramsey lifts of many Cherlin–Shelah–Shi classes.

[1]  Jaroslav Nesetril,et al.  Complexities of Relational Structures , 2013, ArXiv.

[2]  Jaroslav Nešetřil,et al.  Simple proof of the existence of restricted ramsey graphs by means of a partite construction , 1981, Comb..

[3]  Jaroslav Nešetřil,et al.  Finite presentation of homogeneous graphs, posets and Ramsey classes , 2005 .

[4]  Zoltán Füredi,et al.  Nonexistence of universal graphs without some trees , 1997, Comb..

[5]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[6]  W. T. Trotter,et al.  Graphs and Orders in Ramsey Theory and in Dimension Theory , 1985 .

[7]  N. Sauer Oscillation of Urysohn Type Spaces , 2012, 1203.6024.

[8]  Jaroslav Nesetril,et al.  For graphs there are only four types of hereditary Ramsey classes , 1989, J. Comb. Theory, Ser. B.

[9]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[10]  Jan Hubivcka,et al.  Bowtie-free graphs have a Ramsey lift , 2014 .

[11]  Nguyen Van The,et al.  Structural Ramsey theory of metric spaces and topological dynamics of isometry groups , 2008 .

[12]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[13]  Vojtěch Rödl,et al.  Partite Construction and Ramsey Space Systems , 1990 .

[14]  W. Fouché Symmetry and the Ramsey degree of posets , 1997, Discret. Math..

[15]  L. Nguyen Van Th'e,et al.  Structural Ramsey theory of metric spaces and topological dynamics of isometry groups , 2008, 0804.1593.

[16]  W. Hodges CLASSIFICATION THEORY AND THE NUMBER OF NON‐ISOMORPHIC MODELS , 1980 .

[17]  Vojtech Rödl,et al.  Two Proofs of the Ramsey Property of the Class of Finite Hypergraphs , 1982, Eur. J. Comb..

[18]  Jaroslav Nesetril,et al.  Universal Structures with Forbidden Homomorphisms , 2015, Logic Without Borders.

[19]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[20]  Norbert Sauer Vertex partitions of metric spaces with finite distance sets , 2012, Discret. Math..

[21]  Julien Melleray,et al.  Polish groups with metrizable universal minimal flows , 2014, 1404.6167.

[22]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[23]  Miodrag Sokic Unary functions , 2016, Eur. J. Comb..

[24]  A. Lachlan On countable stable structures which are homogeneous for a finite relational language , 1984 .

[25]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[26]  Vojtěch Rödl,et al.  Combinatorial partitions of finite posets and lattices —Ramsey lattices , 1984 .

[27]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[28]  Jaroslav Nesetril,et al.  Ramsey properties and extending partial automorphisms for classes of finite structures , 2017, ArXiv.

[29]  Jaroslav Nesetril,et al.  Metric spaces are Ramsey , 2007, Eur. J. Comb..

[30]  Jaroslav Nesetril,et al.  Automorphism groups and Ramsey properties of sparse graphs , 2018, ArXiv.

[31]  Saharon Shelah,et al.  Universal graphs with a forbidden subgraph: Block path solidity , 2016, Comb..

[32]  Vojtech Rödl,et al.  A short proof of the existence of highly chromatic hypergraphs without short cycles , 1979, J. Comb. Theory, Ser. B.

[33]  J. Covington Homogenizable relational structures , 1990 .

[34]  J. D. Halpern,et al.  A partition theorem , 1966 .

[35]  Gregory L. Cherlin,et al.  Forbidden substructures and combinatorial dichotomies: WQO and universality , 2011, Discret. Math..

[36]  Gregory L. Cherlin,et al.  Graphs omitting a finite set of cycles , 1996, J. Graph Theory.

[37]  Michael Pinsker,et al.  Decidability of Definability , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[38]  Manuel Bodirsky,et al.  Ramsey classes: examples and constructions , 2015, Surveys in Combinatorics.

[39]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[40]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[41]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[42]  Gregory L. Cherlin,et al.  Universal graphs with a forbidden near-path or 2-bouquet , 2007, J. Graph Theory.

[43]  Gábor Tardos,et al.  Regular families of forests, antichains and duality pairs of relational structures , 2017, Comb..

[44]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[45]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..

[46]  Slawomir Solecki Direct Ramsey theorem for structures involving relations and functions , 2012, J. Comb. Theory, Ser. A.

[47]  Domingos Dellamonica,et al.  Distance Preserving Ramsey Graphs , 2012, Comb. Probab. Comput..

[48]  Zoltán Füredi,et al.  On the existence of countable universal graphs , 1997, J. Graph Theory.

[49]  Jaroslav Nesetril,et al.  Homomorphism and Embedding Universal Structures for Restricted Classes , 2016, J. Multiple Valued Log. Soft Comput..

[50]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[51]  Alexandre A. Ivanov,et al.  Strongly Determined Types , 1999, Ann. Pure Appl. Log..

[52]  Jaroslav Nesetril,et al.  Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.

[53]  Claude Laflamme,et al.  Ramsey Precompact Expansions of Homogeneous Directed Graphs , 2013, Electron. J. Comb..

[54]  R L Graham,et al.  Ramsey's Theorem for a Class of Categories. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Péter Komjáth Some remarks on universal graphs , 1999, Discret. Math..

[56]  Jaroslav Nesetril,et al.  Forbidden lifts (NP and CSP for combinatorialists) , 2007, Eur. J. Comb..

[57]  N.W. Sauer Distance Sets of Urysohn Metric Spaces , 2013, Canadian Journal of Mathematics.

[58]  Roland Fraïssé Theory of relations , 1986 .

[59]  Jaroslav Nesetril,et al.  Ramsey classes with forbidden homomorphisms and a closure , 2015, Electron. Notes Discret. Math..

[60]  Gregory L. Cherlin,et al.  Forbidden subgraphs and forbidden substructures , 2001, Journal of Symbolic Logic.

[61]  J. Spencer Ramsey Theory , 1990 .

[62]  János Pach,et al.  Some universal graphs , 1988 .

[63]  Gregory L. Cherlin,et al.  Graphs omitting a bushy tree , 1997, J. Graph Theory.

[64]  Lionel Nguyen Van Th'e,et al.  More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions , 2012, 1201.1270.

[65]  V. Rödl,et al.  The Ramsey property for graphs with forbidden complete subgraphs , 1976 .

[66]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[67]  Jaroslav Nešetřil Ramsey theory , 1996 .

[68]  Jaroslav Nesetril,et al.  Strong Ramsey theorems for Steiner systems , 1987 .

[69]  Saharon Shelah,et al.  Universal graphs with a forbidden subtree , 2007, J. Comb. Theory, Ser. B.

[70]  Péter Komjáth,et al.  There is no universal countable pentagon-free graph , 1994, J. Graph Theory.

[71]  Vojtěch Rödl,et al.  A structural generalization of the Ramsey theorem , 1977 .

[72]  Maurice Pouzet,et al.  Divisibility of countable metric spaces , 2007, Eur. J. Comb..