Omni-conducting fullerenes

Abstract Within the graph-theoretical SPP (Source-and-Sink Potential) model, a strong omni-conductor can be defined as a molecular graph that is predicted to conduct at the Fermi level, no matter how it is connected by single-atom contacts to the wires. Exhaustive search ( n ⩽ 70 for general isomers; n ⩽ 140 for isolated-pentagon isomers) shows that nearly all fullerene isomers Cn in the chemical size range are strong omni-conductors. The isolated-pentagon isomer of C60 is a strong omniconductor, whereas the isolated-pentagon isomer of C70, which has a non-bonding LUMO, has some insulating pairs of connections.

[1]  M. Ernzerhof Simple orbital theory for the molecular electrician. , 2011, The Journal of chemical physics.

[2]  Joseph E. Subotnik,et al.  Ghost transmission: How large basis sets can make electron transport calculations worse. , 2010, The Journal of chemical physics.

[3]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[4]  Hilke Bahmann,et al.  Electron Transmission through Aromatic Molecules. , 2006, Journal of chemical theory and computation.

[5]  Brendan D. McKay,et al.  The Generation of Fullerenes , 2012, J. Chem. Inf. Model..

[6]  Patrick W. Fowler,et al.  Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs , 2007, J. Chem. Inf. Model..

[7]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[8]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[9]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[10]  M. Ratner,et al.  Electron transport through conjugated molecules: when the pi system only tells part of the story. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  Equiconducting molecular electronic devices. , 2010, The Journal of chemical physics.

[12]  B. McKay,et al.  The smallest fullerene without a spiral , 2012 .

[13]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[14]  Andreas W. M. Dress,et al.  A Constructive Enumeration of Fullerenes , 1997, J. Algorithms.

[15]  P. Fowler,et al.  Conduction in graphenes. , 2009, The Journal of chemical physics.

[16]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[17]  Min Zhuang,et al.  Source and sink potentials for the description of open systems with a stationary current passing through. , 2007, The Journal of chemical physics.

[18]  Patrick W. Fowler,et al.  An analytical model for steady-state currents in conjugated systems , 2008 .

[19]  Patrick W. Fowler,et al.  Non-bonding orbitals in graphite, carbon tubules, toroids andfullerenes , 1997 .

[20]  P W Fowler,et al.  A selection rule for molecular conduction. , 2009, The Journal of chemical physics.

[21]  Patrick W. Fowler,et al.  Faraday communications. An end to the search for the ground state of C84 , 1992 .

[22]  P. Fowler,et al.  A fullerene without a spiral , 1993 .

[23]  D. Neuhauser,et al.  A Hückel study of the effect of a molecular resonance cavity on the quantum conductance of an alkene wire , 2004 .

[24]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[25]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[26]  Patrick W. Fowler,et al.  Pentagon adjacency as a determinant of fullerene stability , 1999 .

[27]  M. Ernzerhof A simple model of molecular electronic devices and its analytical solution. , 2007, The Journal of chemical physics.

[28]  D. Neuhauser,et al.  Quantum interference in polycyclic hydrocarbon molecular wires , 2004 .

[29]  M. Kiguchi Electrical conductance of single C60 and benzene molecules bridging between Pt electrode , 2009 .