A review of thermochemical conversion of microalgae

Microalgae are very effective microorganisms for CO2 capturing and a promising source of lipids for biodiesel as well as other interesting compounds. Many different ways of exploitation of these organisms are being tested. This work presents a review of the state of the art of the research and development of thermochemical conversion of microalgae with a special focus on pyrolysis and hydrothermal liquefaction. Aspects related to the type of reactors, the products obtained and the analytical applications are covered. The actual reaction scheme of pyrolysis of microalgae is extremely complex because of the formation of over hundreds of intermediate products. Various kinetic models reported in the literature and in a previous study with experimental validations are presented in this review to provide the current status of the study.

[1]  J. A. Conesa,et al.  Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data , 2001 .

[2]  C. Snape,et al.  Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis , 1995 .

[3]  Changyan Yang,et al.  Fast pyrolysis of microalgae to produce renewable fuels , 2004 .

[4]  Li Chun,et al.  Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake , 2010 .

[5]  F. Min,et al.  Non-isothermal Kinetics of Pyrolysis of Three Kinds of Fresh Biomass , 2007 .

[6]  Jenny M. Jones,et al.  Kinetics of the thermal decomposition of biomass , 2010 .

[7]  T. Minowa,et al.  Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae , 1999 .

[8]  J. F. González,et al.  Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry , 2006 .

[9]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[10]  Jacob A. Moulijn,et al.  Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels , 2011 .

[11]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[12]  M. Maciejewski,et al.  Computational aspects of kinetic analysis. Part B: The ICTAC kinetics project : the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield , 2000 .

[13]  J. Garcia-Quesada,et al.  Thermogravimetry and Py-GC/MS techniques as fast qualitative methods for comparing the biochemical composition of Nannochloropsis oculata samples obtained under different culture conditions. , 2013, Bioresource technology.

[14]  Panagiotis Grammelis,et al.  Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite , 2003 .

[15]  Qin Chen,et al.  Microwave-assisted pyrolysis of microalgae for biofuel production. , 2011, Bioresource technology.

[16]  J. Villaseñor,et al.  Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. , 2012, Bioresource technology.

[17]  Changwei Hu,et al.  The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. , 2010, Bioresource technology.

[18]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[19]  S. Bhattacharya,et al.  Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola. , 2012, Bioresource technology.

[20]  A. Marcilla,et al.  Comments on “Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations” (Appl. Energy 88 (2011) 3189–3196) , 2012 .

[21]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[22]  Xiaoqian Ma,et al.  A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. , 2012, Bioresource technology.

[23]  P. Biller,et al.  Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. , 2011, Bioresource technology.

[24]  Abolghasem Shahbazi,et al.  Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil , 2010 .

[25]  A. Marcilla,et al.  Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. , 2009 .

[26]  A. Demirbas,et al.  Biomass resource facilities and biomass conversion processing for fuels and chemicals , 2001 .

[27]  K. Das,et al.  Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. , 2011, Bioresource technology.

[28]  L. Angelini,et al.  Thermal analysis of biomass and corresponding pyrolysis products , 1996 .

[29]  David Chiaramonti,et al.  Power generation using fast pyrolysis liquids from biomass , 2007 .

[30]  E. Franceschi,et al.  Applications of Thermal Analysis on the Marine Phytoplankton, Tetraselmis Suecica , 2001 .

[31]  Qingyu Wu,et al.  Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides , 2000, Journal of Applied Phycology.

[32]  Ayhan Demirbas,et al.  Oily Products from Mosses and Algae via Pyrolysis , 2006 .

[33]  H. Ohtani,et al.  Analysis of lipid components in zooplankter individuals by reactive pyrolysis-gas chromatography in the presence of organic alkali. , 1998, Uchu Seibutsu Kagaku.

[34]  C. Snape,et al.  A catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers , 2005 .

[35]  Ming-de Yang,et al.  Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. , 2010, Bioresource technology.

[36]  S. Derenne,et al.  Occurrence of tightly bound isoprenoid acids in an algal, resistant biomacromolecule: possible geochemical implications , 1991 .

[37]  C. Snape,et al.  Comparison of the generation of oil by the extraction and the hydropyrolysis of biomass , 2006 .

[38]  R. Saxena,et al.  Bio-fuels from thermochemical conversion of renewable resources: A review , 2008 .

[39]  Ayhan Demirbas,et al.  Mechanisms of liquefaction and pyrolysis reactions of biomass , 2000 .

[40]  H. Harvey,et al.  Preservation of algaenan and proteinaceous material during the oxic decay of Botryococcus braunii as revealed by pyrolysis-gas chromatography/mass spectrometry and 13C NMR spectroscopy , 2003 .

[41]  Keat-Teong Lee,et al.  Microalgae biofuels: A critical review of issues, problems and the way forward. , 2012, Biotechnology advances.

[42]  M. Kruge,et al.  A molecular evaluation of contaminants and natural organic matter in bottom sediments from western Lake Ontario , 1998 .

[43]  C. A. Russell,et al.  Hydropyrolysis of algae, bacteria, archaea and lake sediments; insights into the origin of nitrogen compounds in petroleum , 2004 .

[44]  S. Adhikari,et al.  Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. , 2012, Bioresource technology.

[45]  A. Marcilla,et al.  Study of the pyrolysis behaviour of peroxide crosslinked unplasticized PVC , 2001 .

[46]  Javier Bilbao,et al.  Influence of temperature on biomass pyrolysis in a conical spouted bed reactor , 2012 .

[47]  A. Demirbas,et al.  An Overview of Biomass Pyrolysis , 2002 .

[48]  Young‐Kwon Park,et al.  Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor. , 2009, Bioresource technology.

[49]  Xiaoqian Ma,et al.  Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations , 2011 .

[50]  Senthil Chinnasamy,et al.  Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. , 2011, Bioresource technology.

[51]  N. Papayannakos,et al.  Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects , 1991 .

[52]  J. Bellan,et al.  A Generalized Biomass Pyrolysis Model Based on Superimposed Cellulose, Hemicelluloseand Liqnin Kinetics , 1997 .

[53]  D. Fabbri,et al.  The chemical composition of Black Sea suspended particulate organic matter: pyrolysis-GC/MS as a complementary tool to traditional oceanographic analyses , 2000 .

[54]  Morgan Fröling,et al.  Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies , 2008 .

[55]  Phillip E. Savage,et al.  Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. , 2010 .

[56]  John W. Scott,et al.  Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. , 2011, Bioresource technology.

[57]  Juan F. Pérez,et al.  ESTUDIO CINÉTICO DEL PROCESO DE DEVOLATILIZACIÓN DE BIOMASA LIGNOCELULÓSICA MEDIANTE ANÁLISIS TERMOGRAVIMÉTRICO PARA TAMAÑOS DE PARTÍCULA DE 2 A 19 mm , 2008 .

[58]  A. Marcilla,et al.  Kinetic models for the thermal decomposition of PVC plastisols , 1997 .

[59]  Michimasa Kishimoto,et al.  Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction , 1995 .

[60]  A. Jensen,et al.  Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry , 2001 .

[61]  D. Fabbri,et al.  Pyrolysis-GC-MS to trace terrigenous organic matter in marine sediments: a comparison between pyrolytic and lipid markers in the Adriatic Sea , 2005 .

[62]  Yutaka Dote,et al.  Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction , 1994 .

[63]  W. Peng,et al.  Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. , 2001, Bioresource technology.

[64]  Joseph H. Flynn,et al.  General Treatment of the Thermogravimetry of Polymers. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[65]  Amanda Lea-Langton,et al.  Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process , 2012 .

[66]  X. Miao,et al.  High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. , 2004, Journal of biotechnology.

[67]  Vladimir Strezov,et al.  Thermal characterisation of microalgae under slow pyrolysis conditions , 2009 .

[68]  V. Strezov,et al.  Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. , 2011, Bioresource technology.

[69]  Brajendra K Sharma,et al.  Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. , 2012, Bioresource technology.

[70]  A. Jess,et al.  Kinetic study of Chinese biomass slow pyrolysis : Comparison of different kinetic models , 2007 .

[71]  Faizal Bux,et al.  Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. , 2011, Journal of bioscience and bioengineering.

[72]  G. Sakellaropoulos,et al.  Pyrolysis kinetics and combustion characteristics of waste recovered fuels , 2009 .

[73]  A. Marcilla,et al.  Additional considerations to the paper entitled: “Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield.” , 2006 .

[74]  Bruce E. Waymack,et al.  Pyrolysis behavior and kinetics of biomass derived materials , 2002 .