Time Asymptotics for Solutions of Vlasov–Poisson Equation in a Circle

We prove that there exists a class of solutions of the nonlinear Vlasov–Poisson equation (VPE) on a circle that converges weakly, as t → ∞, to a stationary homogeneous solution of VPE. This behavior is called, in the linear case, Landau damping. The result is obtained by constructing a suitable scattering problem for the solutions of the Vlasov–Poisson problem. A consequence of this result is that a class of stationary solutions of the Vlasov–Poisson equation is unstable in a weak topology.

[1]  R. Robert,et al.  Large deviations for young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law , 1994 .

[2]  Sergiu Klainerman,et al.  Long-time behavior of solutions to nonlinear evolution equations , 1982 .

[3]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[4]  M. Isichenko NONLINEAR LANDAU DAMPING IN COLLISIONLESS PLASMA AND INVISCID FLUID , 1996, chao-dyn/9612021.

[5]  A. Vlasov,et al.  On the kinetic theory of an assembly of particles with collective interaction , 1945 .

[6]  S. Ukai,et al.  On classical solutions in the large in time of two-dimensional Vlasov's equation , 1978 .

[7]  V. Maslov,et al.  THE LINEAR THEORY OF LANDAU DAMPING , 1986 .

[8]  Harold Grad,et al.  The many faces of entropy , 1961 .

[9]  Benoît Perthame,et al.  Time decay, propagation of low moments and dispersive effects for kinetic equations , 1996 .

[10]  R. Illner,et al.  Time Decay of the Solutions of the Vlasov–Poisson System in the Plasma Physical Case , 1996 .

[11]  Vladimir Igorevich Arnolʹd,et al.  Les méthodes mathématiques de la mécanique classique , 1976 .

[12]  Walter A. Strauss,et al.  Nonlinear scattering theory at low energy , 1981 .

[13]  Gustavo Ponce,et al.  Global, small amplitude solutions to nonlinear evolution equations , 1983 .

[14]  H. Neunzert,et al.  A note on the nonlinear stability of a spatially symmetric vlasov‐possion flow , 1986 .

[15]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[16]  Andrew J. Majda,et al.  Concentrations in the one-dimensional Vlasov-Poisson equations, I.: temporal development and non-unique weak solutions in the single component case , 1994 .

[17]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .

[18]  Jack Schaeffer,et al.  Time decay for solutions to the linearized Vlasov equation , 1994 .

[19]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[20]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[21]  G. Rein,et al.  A rigorous stability result for the Vlasov-Poisson system in three dimensions , 1993 .

[22]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .