Hybrid Dynamical Models of Human Motion for the Recognition of Human Gaits

We propose a hybrid dynamical model of human motion and develop a classification algorithm for the purpose of analysis and recognition. We assume that some temporal statistics are extracted from the images, and use them to infer a dynamical model that explicitly represents ground contact events. Such events correspond to “switches” between symmetric sets of hidden parameters in an auto-regressive model. We propose novel algorithms to estimate switches and model parameters, and develop a distance between such models that explicitly factors out exogenous inputs that are not unique to an individual or his/her gait. We show that such a distance is more discriminative than the distance between simple linear systems for the task of gait recognition.

[1]  B. Moor,et al.  Subspace angles and distances between ARMA models , 2000 .

[2]  Michael J. Black,et al.  Learning the Statistics of People in Images and Video , 2003, International Journal of Computer Vision.

[3]  Hayit Greenspan,et al.  Context-dependent segmentation and matching in image databases , 2004, Comput. Vis. Image Underst..

[4]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Stefano Soatto,et al.  Recognition of human gaits , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Aaron F. Bobick,et al.  Parametric Hidden Markov Models for Gesture Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Larry S. Davis,et al.  Gait Recognition Using Image Self-Similarity , 2004, EURASIP J. Adv. Signal Process..

[8]  Jitendra K. Tugnait,et al.  Detection and estimation for abruptly changing systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[10]  Roger W. Brockett,et al.  A scaling theory for linear systems , 1980 .

[11]  Geoffrey E. Hinton,et al.  Switching State-Space Models , 1996 .

[12]  Mubarak Shah,et al.  Motion-Based Recognition , 1997, Computational Imaging and Vision.

[13]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[14]  Mark S. Nixon,et al.  What image information is important in silhouette-based gait recognition? , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[15]  Christoph Bregler,et al.  Learning and recognizing human dynamics in video sequences , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  James M. Rehg,et al.  Learning and inference in parametric switching linear dynamic systems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Jitendra Malik,et al.  Tracking people with twists and exponential maps , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[18]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[19]  Ankur Agarwal,et al.  Tracking Articulated Motion Using a Mixture of Autoregressive Models , 2004, ECCV.

[20]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Richard J. Martin A metric for ARMA processes , 2000, IEEE Trans. Signal Process..

[22]  D. Dowson,et al.  The Fréchet distance between multivariate normal distributions , 1982 .

[23]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  J. Little,et al.  Recognizing People by Their Gait: The Shape of Motion , 1998 .

[25]  Fredrik Gustafsson,et al.  Adaptive Filtering and Change Detection: Gustafsson: Adaptive , 2001 .

[26]  D. Freedman,et al.  Some Asymptotic Theory for the Bootstrap , 1981 .

[27]  Vladimir Pavlovic,et al.  Impact of dynamic model learning on classification of human motion , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[28]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Jitendra Malik,et al.  Recognizing action at a distance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[31]  Biing-Hwang Juang,et al.  Mixture autoregressive hidden Markov models for speech signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[32]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[34]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[35]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision: From Images to Geometric Models , 2003 .

[36]  Lihi Zelnik-Manor,et al.  Statistical analysis of dynamic actions , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Pietro Perona,et al.  Decomposition of human motion into dynamics-based primitives with application to drawing tasks , 2003, Autom..

[38]  Stefano Soatto,et al.  A model (In)validation approach to gait recognition , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[39]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Ahmed M. Elgammal,et al.  Gait style and gait content: bilinear models for gait recognition using gait re-sampling , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[41]  Jessica K. Hodgins,et al.  Automatic Joint Parameter Estimation from Magnetic Motion Capture Data , 2023, Graphics Interface.

[42]  Alessandro Bissacco,et al.  Modeling and learning contact dynamics in human motion , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[43]  René Vidal,et al.  Identification of Deterministic Switched ARX Systems via Identification of Algebraic Varieties , 2005, HSCC.

[44]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.

[45]  Qiang He,et al.  Individual recognition from periodic activity using hidden Markov models , 2000, Proceedings Workshop on Human Motion.