On the Density of Non-simple 3-Planar Graphs

A k-planar graph is a graph that can be drawn in the plane such that every edge is crossed at most k times. For \(k \le 4\), Pach and Toth [20] proved a bound of \((k+3)(n-2)\) on the total number of edges of a k-planar graph, which is tight for \(k=1,2\). For \(k=3\), the bound of \(6n-12\) has been improved to \(\frac{11}{2}n-11\) in [19] and has been shown to be optimal up to an additive constant for simple graphs. In this paper, we prove that the bound of \(\frac{11}{2}n-11\) edges also holds for non-simple 3-planar graphs that admit drawings in which non-homotopic parallel edges and self-loops are allowed. Based on this result, a characterization of optimal 3-planar graphs (that is, 3-planar graphs with n vertices and exactly \(\frac{11}{2}n-11\) edges) might be possible, as to the best of our knowledge the densest known simple 3-planar is not known to be optimal.

[1]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[2]  Hiroshi Nagamochi,et al.  Testing Full Outer-2-planarity in Linear Time , 2015, WG.

[3]  Frank Harary,et al.  Graph Theory , 2016 .

[4]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[5]  Joachim Gudmundsson,et al.  Notes on Large Angle Crossing Graphs , 2009, Chic. J. Theor. Comput. Sci..

[6]  Franz-Josef Brandenburg,et al.  On Sparse Maximal 2-Planar Graphs , 2012, Graph Drawing.

[7]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[8]  Franz-Josef Brandenburg 1-Visibility Representations of 1-Planar Graphs , 2014, J. Graph Algorithms Appl..

[9]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[10]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[11]  Michael A. Bekos,et al.  On the Density of 3-Planar Graphs , 2016, ArXiv.

[12]  Michael A. Bekos,et al.  Planar Octilinear Drawings with One Bend Per Edge , 2015 .

[13]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[14]  W. T. Tutte How to Draw a Graph , 1963 .

[15]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[16]  J. van Leeuwen,et al.  Drawing Graphs , 2001, Lecture Notes in Computer Science.

[17]  Oleg V. Borodin A new proof of the 6 color theorem , 1995, J. Graph Theory.

[18]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[19]  Michael A. Bekos,et al.  1-Planar Graphs have Constant Book Thickness , 2015, ESA.

[20]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[21]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[22]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[23]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.