A siphonous morphology affects light-harvesting modulation in the intertidal green macroalga Bryopsis corticulans (Ulvophyceae)

[1]  J. Serôdio,et al.  Ulvophyceaen photophysiology and research opportunities , 2017 .

[2]  A. Falciatore,et al.  The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. , 2017, The New phytologist.

[3]  J. Serôdio,et al.  Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). , 2017, The New phytologist.

[4]  A. Ruban,et al.  The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching , 2017, Nature Plants.

[5]  U. Goodenough,et al.  LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells , 2016, Proceedings of the National Academy of Sciences.

[6]  G. Peltier,et al.  Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light1 , 2016, Plant Physiology.

[7]  A. Falciatore,et al.  Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum , 2016, Journal of experimental botany.

[8]  A. Ruban Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage1 , 2016, Plant Physiology.

[9]  K. Niyogi,et al.  Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii* , 2016, The Journal of Biological Chemistry.

[10]  A. Aharoni,et al.  Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism , 2016, Nature Plants.

[11]  A. Ruban,et al.  Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. , 2015, Journal of photochemistry and photobiology. B, Biology.

[12]  Mei Li,et al.  Crystal structures of the PsbS protein essential for photoprotection in plants , 2015, Nature Structural &Molecular Biology.

[13]  Jian-Ren Shen,et al.  Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex , 2015, Science.

[14]  Andreas Holzinger,et al.  Desiccation tolerance in the chlorophyte green alga Ulva compressa: does cell wall architecture contribute to ecological success? , 2015, Planta.

[15]  A. Ruban,et al.  Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities , 2015, Photosynthesis Research.

[16]  Reimund Goss,et al.  Biodiversity of NPQ. , 2015, Journal of plant physiology.

[17]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[18]  J. Serôdio,et al.  Pigment profile in the photosynthetic sea slug Elysia viridis (Montagu, 1804) , 2014 .

[19]  H. van Amerongen,et al.  Natural strategies for photosynthetic light harvesting , 2014, Nature Chemical Biology.

[20]  A. Ruban,et al.  The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Jian-Ren Shen,et al.  Isolation and characterization of a PSI–LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans , 2014, Photosynthesis Research.

[22]  Govindjee,et al.  Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria , 2014, Advances in Photosynthesis and Respiration.

[23]  N. Ye,et al.  Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. , 2013, Plant biology.

[24]  T. Morosinotto,et al.  Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W] , 2013, Plant Cell.

[25]  Jian-Ren Shen,et al.  Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans , 2013, Photosynthesis Research.

[26]  A. Falciatore,et al.  High Light Acclimation in the Secondary Plastids Containing Diatom Phaeodactylum tricornutum is Triggered by the Redox State of the Plastoquinone Pool1[W][OA] , 2012, Plant Physiology.

[27]  A. Ruban The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting , 2012 .

[28]  Bin Zhou,et al.  Comparative Studies on the Ecophysiological Differences of Two Green Tide Macroalgae under Controlled Laboratory Conditions , 2012, PloS one.

[29]  Erik H Murchie,et al.  Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. , 2012, Biochimica et biophysica acta.

[30]  Matthew P. Johnson,et al.  The photoprotective molecular switch in the photosystem II antenna. , 2012, Biochimica et biophysica acta.

[31]  M. Ballottari,et al.  Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. , 2012, Biochimica et biophysica acta.

[32]  N. Ye,et al.  De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems , 2012, BMC Genomics.

[33]  G. Finazzi,et al.  Regulation of electron transport in microalgae. , 2011, Biochimica et biophysica acta.

[34]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[35]  Matthew P. Johnson,et al.  Natural light harvesting: principles and environmental trends , 2011 .

[36]  Matthew P. Johnson,et al.  Restoration of Rapidly Reversible Photoprotective Energy Dissipation in the Absence of PsbS Protein by Enhanced ΔpH* , 2011, The Journal of Biological Chemistry.

[37]  P. Huovinen,et al.  Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits , 2011 .

[38]  K. Niyogi,et al.  Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii , 2011, PLoS biology.

[39]  A. Falciatore,et al.  An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light , 2010, Proceedings of the National Academy of Sciences.

[40]  T. Morosinotto,et al.  Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization , 2010, Proceedings of the National Academy of Sciences.

[41]  K. Niyogi,et al.  An ancient light-harvesting protein is critical for the regulation of algal photosynthesis , 2009, Nature.

[42]  K. Niyogi,et al.  Sensing and responding to excess light. , 2009, Annual review of plant biology.

[43]  F. Zechman,et al.  A multi-locus time-calibrated phylogeny of the siphonous green algae. , 2009, Molecular phylogenetics and evolution.

[44]  T. Kuang,et al.  Characterization of chlorophyll–protein complexes isolated from a Siphonous green alga, Bryopsis corticulans , 2008, Photosynthesis Research.

[45]  Nathan Nelson,et al.  The structure of a plant photosystem I supercomplex at 3.4 Å resolution , 2007, Nature.

[46]  Robert Eugene Blankenship,et al.  The Evolutionary Transition from Anoxygenic to Oxygenic Photosynthesis , 2007 .

[47]  F. Zechman,et al.  PHYLOGENETIC ANALYSES OF THE BRYOPSIDALES (ULVOPHYCEAE, CHLOROPHYTA) BASED ON RUBISCO LARGE SUBUNIT GENE SEQUENCES 1 , 2006 .

[48]  E. Maruta,et al.  The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat. , 2005, Journal of experimental botany.

[49]  Yu Liang,et al.  Evidence for dissociation of chlorophyll b from the main light-harvesting complex in the oligomerization state isolated from marine alga, Bryopsis corticulans. , 2005, Biochimica et biophysica acta.

[50]  J. Provan,et al.  Tracking the invasive history of the green alga Codium fragile ssp. tomentosoides , 2004, Molecular ecology.

[51]  K. Niyogi,et al.  Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein* , 2004, Journal of Biological Chemistry.

[52]  P. Huovinen,et al.  Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile , 2004 .

[53]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[54]  N. Baker,et al.  Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv-/Fm-; without measuring Fo-; , 1997, Photosynthesis Research.

[55]  C. Osmond,et al.  Two components of onset and recovery during photoinhibition of Ulva rotundata , 1992, Planta.

[56]  E. Bergantino,et al.  Light- and pH-dependent structural changes in the PsbS subunit of photosystem II , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[58]  Stefan Jansson,et al.  A pigment-binding protein essential for regulation of photosynthetic light harvesting , 2000, Nature.

[59]  I. Davison,et al.  STRESS TOLERANCE IN INTERTIDAL SEAWEEDS , 1996 .

[60]  E. Tyystjärvi,et al.  The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Harrison,et al.  Seaweed Ecology and Physiology. , 1995 .

[62]  G. Noctor,et al.  Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts , 1993 .

[63]  E. Aro,et al.  Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. , 1993, Biochimica et biophysica acta.

[64]  A. Ruban,et al.  ΔpH-dependent quenching of the Fo level of chlorophyll fluorescence in spinach leaves , 1993 .

[65]  W. J. Henley GROWTH AND PHOTOSYNTHESIS OF ULVA ROTUNDATA (CHLOROPHYTA) AS A FUNCTION OF TEMPERATURE AND SQUARE WAVE IRRADIANCE IN INDOOR CULTURE 1 , 1992 .

[66]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[67]  C. Osmond,et al.  Diurnal responses of photosynthesis and fluorescence in Ulva rotundata acclimated to sun and shade in outdoor culture , 1991 .

[68]  S. Maberly,et al.  A COMPARISON OF AIR AND WATER AS ENVIRONMENTS FOR PHOTOSYNTHESIS BY THE INTERTIDAL ALGA FUCUS SPIRALIS (PHAEOPHYTA) 1 , 1990 .

[69]  M. Okada,et al.  Purification and Characterization of Light-Harvesting Chlorophyll a/b-Protein Complexes of Photosystem II from the Green alga, Bryopsis maxima , 1990 .

[70]  R. J. Porra,et al.  Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989 .

[71]  M. Ikeuchi,et al.  A New 4.8-kDa Polypeptide Intrinsic to the PS II Reaction Center, as Revealed by Modified SDS-PAGE with Improved Resolution of Low-Molecular-Weight Proteins , 1988 .

[72]  W. Chow,et al.  Thylakoid Membrane Organisation in Sun/Shade Acclimation , 1988 .

[73]  G. Krause,et al.  ΔpH‐dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts , 1986 .

[74]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[75]  Jan M. Anderson Chlorophyll-protein complexes of a Codium species, including a light-harvesting siphonaxanthin-Chlorophylla ab-protein complex, an evolutionary relic of some Chlorophyta , 1983 .

[76]  B. Grant,et al.  Purity of Chloroplasts Prepared from the Siphonous Green Alga, Caulerpa simpliciuscula, as Determined by Their Ultrastructure and Their Enzymic Content. , 1980, Plant physiology.

[77]  Trevor Platt,et al.  Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton , 1980 .

[78]  S. W. Thorne,et al.  Chlorophyll-protein complexes of a marine green alga, Caulerpa cactoides , 1980 .

[79]  Harry Y. Yamamoto,et al.  Biochemistry of the violaxanthin cycle in higher plants , 1979 .

[80]  H. Yamamoto,et al.  The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. , 1972, Biochimica et biophysica acta.

[81]  A. Crofts,et al.  Energy-dependent quenching of chlorophyll alpha fluorescence in isolated chloroplasts. , 1970, European journal of biochemistry.

[82]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[83]  H. Gaffron Evolution of photosynthesis. , 1962, Comparative biochemistry and physiology.