暂无分享,去创建一个
[1] K. Weihrauch. The Degrees of Discontinuity of some Translators Between Representations of the Real Numbers , 1992 .
[2] A. J. M. van Engelen,et al. Homogeneous zero-dimensional absolute Borel sets , 1986 .
[3] Victor L. Selivanov,et al. Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..
[4] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.
[5] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[6] Anna Papst. Finiteness And Regularity In Semigroups And Formal Languages , 2016 .
[7] Christian Glaßer,et al. Efficient algorithms for membership in boolean hierarchies of regular languages , 2008, Theor. Comput. Sci..
[8] Victor L. Selivanov. Extending Wadge Theory to k-Partitions , 2017, CiE.
[9] David Haussler,et al. On Regularity of Context-Free Languages , 1983, Theor. Comput. Sci..
[10] Victor L. Selivanov,et al. A reducibility for the dot-depth hierarchy , 2005, Theor. Comput. Sci..
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] Wilfrid Hodges,et al. Model Theory: The existential case , 1993 .
[13] Victor L. Selivanov. A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.
[14] Philippe Schnoebelen,et al. The Height of Piecewise-Testable Languages with Applications in Logical Complexity , 2015, CSL.
[15] Howard Becker,et al. A characterization of jump operators , 1988, Journal of Symbolic Logic.
[16] Philipp Schlicht,et al. Continuous reducibility for the real line , 2012 .
[17] Richard Laver,et al. On Fraisse's order type conjecture , 1971 .
[18] Victor L. Selivanov,et al. A Gandy Theorem for Abstract Structures and Applications to First-Order Definability , 2009, CiE.
[19] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[20] Dick H. J. Jongh,et al. Well-partial orderings and hierarchies , 1977 .
[21] Ludwig Staiger,et al. Ω-languages , 1997 .
[22] Victor L. Selivanov,et al. Fine hierarchies via Priestley duality , 2012, Ann. Pure Appl. Log..
[23] Nitakshi Goyal,et al. General Topology-I , 2017 .
[24] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[25] Victor L. Selivanov,et al. Total Representations , 2013, Log. Methods Comput. Sci..
[26] C. Kuratowski. Sur une généralisation de la notion d'homéomorphie , 1934 .
[27] Nick Bezhanishvili,et al. Operations on a Wadge-Type Hierarchy of Ordinal-Valued Functions , 2014 .
[28] Victor L. Selivanov,et al. Hierarchies and reducibilities on regular languages related to modulo counting , 2009, RAIRO Theor. Informatics Appl..
[29] Takayuki Kihara,et al. The uniform Martin’s conjecture for many-one degrees , 2016, Transactions of the American Mathematical Society.
[30] Paul D. Seymour,et al. Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.
[31] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[32] Victor L. Selivanov,et al. Definability in the h-quasiorder of labeled forests , 2009, Ann. Pure Appl. Log..
[33] Mizuhito Ogawa. Well-quasi-orders and Regular ω-languages , 2018 .
[34] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[35] Denis R. Hirschfeldt. Slicing the Truth - On the Computable and Reverse Mathematics of Combinatorial Principles , 2014, Lecture Notes Series / Institute for Mathematical Sciences / National University of Singapore.
[36] V. L. Selivanov. Hierearchies of hyperarithmetical sets and functions , 1983 .
[37] Alexander S. Kechris,et al. Linear algebraic groups and countable Borel equivalence relations , 2000 .
[38] A. Wires. Definability in the Substructure Ordering of Simple Graphs , 2016 .
[39] Su Gao. Invariant Descriptive Set Theory , 2008 .
[40] C. St. J. A. Nash-Williams,et al. On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[41] V. L. Selivanov,et al. Structure of powers of generalized index sets , 1982 .
[42] Boris A. Trakhtenbrot,et al. Finite automata : behavior and synthesis , 1973 .
[43] Peter Hertling,et al. Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .
[44] Y. Moschovakis. Descriptive Set Theory , 1980 .
[45] B. Mohar,et al. Graph Minors , 2009 .
[46] V. L. Selivanov. Algorithmic complexity of algebraic systems , 1988 .
[47] Luca Motto Ros,et al. Borel-amenable reducibilities for sets of reals , 2008, The Journal of Symbolic Logic.
[48] Victor L. Selivanov. On the Wadge Reducibility of k-Partitions , 2008, Electron. Notes Theor. Comput. Sci..
[49] Daniela Kühn,et al. On well-quasi-ordering infinite trees – Nash–Williams's theorem revisited , 2001, Mathematical Proceedings of the Cambridge Philosophical Society.
[50] Victor L. Selivanov,et al. Definability in the Infix Order on Words , 2009, Developments in Language Theory.
[51] Victor L. Selivanov,et al. Fine hierarchies and m-reducibilities in theoretical computer science , 2008, Theor. Comput. Sci..
[52] Matthew de Brecht. Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..
[53] Christian Glaßer,et al. The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..
[54] Diana Schmidt,et al. Well-Partial Orderings and their Maximal Order Types , 2020 .
[55] J. R. Büchi,et al. Solving sequential conditions by finite-state strategies , 1969 .
[56] Klaus Weihrauch,et al. Levels of Degeneracy and Exact Lower Complexity Bounds for Geometric Algorithms , 1994, CCCG.
[57] A. Kechris. Classical descriptive set theory , 1987 .
[58] Philippe Schnoebelen,et al. Decidability in the Logic of Subsequences and Supersequences , 2015, FSTTCS.
[59] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[60] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[61] Chi Tat Chong,et al. 7 Classification of jump operators , 2015 .
[62] Victor L. Selivanov,et al. The quotient algebra of labeled forests modulo h-equivalence , 2007 .
[63] Philipp Schlicht,et al. Continuous reducibility and dimension of metric spaces , 2017, Arch. Math. Log..
[64] John R. Steel. A Classification of Jump Operator , 1982, J. Symb. Log..
[65] J. W. Addison,et al. Separation principles in the hierarchies of classical and effective descriptive set theory , 1958 .
[66] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[67] A. Louveau,et al. Some results in the wadge hierarchy of borel sets , 1983 .
[68] Theodore A. Slaman,et al. Definable functions on degrees , 1988 .
[69] Vasco Brattka,et al. Effective Choice and Boundedness Principles in Computable Analysis , 2009, The Bulletin of Symbolic Logic.
[70] Philipp Schlicht,et al. Wadge-like reducibilities on arbitrary quasi-Polish spaces , 2012, Mathematical Structures in Computer Science.
[71] Jacques Duparc,et al. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.
[72] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.
[73] Andrew Marks,et al. The universality of polynomial time Turing equivalence , 2016, Mathematical Structures in Computer Science.
[74] Friedhelm Meyer auf der Heide,et al. Hierarchies , 2013, Encyclopedia of GIS.
[75] John R. Steel,et al. Determinateness and the separation property , 1981, Journal of Symbolic Logic.
[76] Takayuki Kihara,et al. On the structure of the Wadge degrees of bqo-valued Borel functions , 2019, Transactions of the American Mathematical Society.
[77] Robert van Wesep,et al. Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .
[79] Alberto Marcone,et al. Foundations of BQO theory , 1994 .
[80] Daisuke Ikegami. Games in set theory and logic , 2010 .
[81] R. McKenzie,et al. Definability in substructure orderings, I: finite semilattices , 2009 .
[82] R. Soare. Recursively enumerable sets and degrees , 1987 .
[83] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[84] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .
[85] J. Ježek,et al. Definability in substructure orderings, IV: Finite lattices , 2009 .
[86] Victor L. Selivanov. A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.
[87] David Abend,et al. Recursive Aspects Of Descriptive Set Theory , 2016 .
[88] Dietrich Kuske,et al. Theories of orders on the set of words , 2006, RAIRO Theor. Informatics Appl..
[89] Philippe Schnoebelen,et al. On the state complexity of closures and interiors of regular languages with subwords and superwords , 2014, Theor. Comput. Sci..
[90] Victor L. Selivanov,et al. Complexity Issues for Preorders on Finite Labeled Forests , 2011, CiE.
[91] Andrew S. Marks,et al. Martin's conjecture, arithmetic equivalence, and countable Borel equivalence relations , 2011, 1109.1875.
[92] Donald A. Martin,et al. Borel-Wadge degrees , 2003 .
[93] C. St. J. A. Nash-Williams,et al. On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.
[94] Математика. Well-quasi-ordering , 2010 .
[95] Victor L. Selivanov,et al. Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.
[96] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.
[97] Ramaswamy Ramanujam,et al. Definability in First Order Theories of Graph Orderings , 2016, LFCS.
[98] J. W. Addison. THE METHOD OF ALTERNATING CHAINS , 2014 .
[99] Christian Glaßer,et al. Efficient algorithms for membership in boolean hierarchies of regular languages , 2016, Theor. Comput. Sci..
[100] Antonio Montalbán,et al. Computable Linearizations of Well-partial-orderings , 2007, Order.
[101] Philippe Schnoebelen,et al. Generalized Post Embedding Problems , 2014, Theory of Computing Systems.
[102] Victor L. Selivanov,et al. Towards a descriptive theory of cb0-spaces , 2014, Mathematical Structures in Computer Science.
[103] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[104] Alessandro Andretta. More on Wadge determinacy , 2006, Ann. Pure Appl. Log..
[105] Victor L. Selivanov. Hierarchies of [ ... ] º 2-measurable k -partitions , 2007 .
[106] Klaus Weihrauch,et al. Computable Analysis , 2005, CiE.
[107] Victor L. Selivanov,et al. Definability in the Homomorphic Quasiorder of Finite Labeled Forests , 2007, CiE.
[108] Ádám Kunos. Definability in the Embeddability Ordering of Finite Directed Graphs , 2015, Order.
[109] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[110] Mizuhito Ogawa. Well-quasi-orders and regular omega-languages , 2004, Theor. Comput. Sci..
[111] Raphaël Carroy. A quasi-order on continuous functions , 2013, J. Symb. Log..
[112] Y. Ershov. A hierarchy of sets. I , 1968 .
[113] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[114] Victor L. Selivanov,et al. Variations on Wadge Reducibility Extended Abstract , 2005, CCA.
[115] Jaroslav Jezek,et al. Definability in Substructure Orderings, II: Finite Ordered Sets , 2010, Order.
[116] Yann Pequignot,et al. A Wadge hierarchy for second countable spaces , 2015, Arch. Math. Log..
[117] A N Skinner,et al. THE UNITED STATES NAVAL OBSERVATORY. , 1899, Science.
[118] Douglas A. Cenzer,et al. Polynomial-Time versus Recursive Models , 1991, Ann. Pure Appl. Log..
[119] Volker Diekert,et al. Fragments of First-Order Logic over Infinite Words , 2009, Theory of Computing Systems.
[120] Robert I. Soare,et al. Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.
[121] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[122] Parosh Aziz Abdulla,et al. Using Forward Reachability Analysis for Verification of Lossy Channel Systems , 2004, Formal Methods Syst. Des..
[123] Arnold W. Miller,et al. Rigid Borel sets and better quasi-order theory , 1985 .
[124] V. Brattka,et al. Weihrauch Degrees, Omniscience Principles and Weak Computability , 2009 .
[125] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[126] Jean Saint Raymond. Preservation of the Borel class under countable-compact-covering mappings , 2007 .
[127] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[128] Victor L. Selivanov,et al. Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..
[129] Victor Selivanov,et al. Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..
[130] Ralph McKenzie,et al. Definability in substructure orderings, III: Finite distributive lattices , 2009 .
[131] Victor L. Selivanov,et al. Definability in the Subword Order , 2010, CiE.
[132] Philipp Schlicht,et al. Borel subsets of the real line and continuous reducibility , 2019, Fundamenta Mathematicae.