1-d Quantum harmonic oscillator with time quasi-periodic quadratic perturbation: Reducibility and growth of Sobolev norms
暂无分享,去创建一个
[1] E. Faou,et al. On weakly turbulent solutions to the perturbed linear Harmonic oscillator , 2020, 2006.08206.
[2] Laurent Thomann,et al. Growth of Sobolev norms for coupled lowest Landau level equations , 2020, Pure and Applied Analysis.
[3] Jiawen Luo,et al. Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations , 2020, Journal of Differential Equations.
[4] B. Grébert,et al. Reducibility of Schrödinger Equation on the Sphere , 2020 .
[5] R. Feola,et al. Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential , 2019, 1910.10657.
[6] R. Feola,et al. Reducibility of Schr\"odinger equation on the sphere. , 2019, 1905.11964.
[7] Riccardo Montalto,et al. Reducibility of Non-Resonant Transport Equation on $${\mathbb {T}}^d$$Td with Unbounded Perturbations , 2018, Annales Henri Poincaré.
[8] A. Maspero. Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations , 2018, Mathematical Research Letters.
[9] Riccardo Montalto,et al. Reducibility of first order linear operators on tori via Moser's theorem , 2018, Journal of Functional Analysis.
[10] Zhenguo Liang,et al. Reducibility of quantum harmonic oscillator on Rd with differential and quasi-periodic in time potential , 2017, Journal of Differential Equations.
[11] B. Grébert,et al. On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential , 2019, Annales de la Faculté des sciences de Toulouse : Mathématiques.
[12] Riccardo Montalto,et al. Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations. III , 2018, Journal of Mathematical Physics.
[13] Riccardo Montalto. A P ] 9 A ug 2 01 7 A reducibility result for a class of linear wave equations on T d , 2018 .
[14] B. Grébert,et al. On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time potential , 2018 .
[15] J. You,et al. Asymptotics of spectral gaps of quasi-periodic Schrödinger operators , 2017, 1712.04700.
[16] D. Robert,et al. Growth of Sobolev norms for abstract linear Schrödinger equations , 2017, Journal of the European Mathematical Society.
[17] D. Robert,et al. Reducibility of the Quantum Harmonic Oscillator in $d$-dimensions with Polynomial Time Dependent Perturbation , 2017, 1702.05274.
[18] D. Bambusi. Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2017, Communications in Mathematical Physics.
[19] D. Robert,et al. On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms , 2016, 1610.03359.
[20] Zhenguo Liang,et al. Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay , 2016, 1605.05480.
[21] D. Bambusi. Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2016, Communications in Mathematical Physics.
[22] B. Gr'ebert,et al. On reducibility of Quantum Harmonic Oscillator on $\mathbb{R}^d$ with quasiperiodic in time potential , 2016, 1603.07455.
[23] Jean-Marc Delort. Growth of Sobolev Norms for Solutions of Time Dependent Schrödinger Operators with Harmonic Oscillator Potential , 2014 .
[24] J. You,et al. Embedding of Analytic Quasi-Periodic Cocycles into Analytic Quasi-Periodic Linear Systems and its Applications , 2012, 1202.2911.
[25] B. Grébert,et al. KAM for the Quantum Harmonic Oscillator , 2010, 1003.2793.
[26] Xiaoping Yuan,et al. Spectrum for quantum duffing oscillator and small‐divisor equation with large‐variable coefficient , 2010 .
[27] Sergei Kuksin,et al. KAM for the nonlinear Schrödinger equation , 2010 .
[28] A. Avila,et al. The Ten Martini Problem , 2009 .
[29] Sana Hadj Amor. Hölder Continuity of the Rotation Number for Quasi-Periodic Co-Cycles in $${SL(2, \mathbb R)}$$ , 2009 .
[30] S. Kuksin,et al. On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .
[31] A. Avila,et al. Almost localization and almost reducibility , 2008, 0805.1761.
[32] W.-M. Wang,et al. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.
[33] Faculty of Computer Science,et al. Weakly Regular Floquet Hamiltonians with Pure Point Spectrum , 2001, math-ph/0103041.
[34] D. Bambusi,et al. Time Quasi-Periodic Unbounded Perturbations¶of Schrödinger Operators and KAM Methods , 2000, math-ph/0010002.
[35] K. Yajima,et al. Absolute Continuity of the Floquet Spectrum¶for a Nonlinearly Forced Harmonic Oscillator , 2000, math-ph/0003007.
[36] J. Bourgain. Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential , 1999 .
[37] Manuel Mañas,et al. Darboux transformations for the nonlinear Schrödinger equations , 1996 .
[38] Sergej B. Kuksin,et al. Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .
[39] L. H. Eliasson,et al. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .
[40] M. Combescure. The quantum stability problem for time-periodic perturbations of the harmonic oscillator , 1987 .
[41] M. Loss,et al. Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations , 1986 .
[42] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[43] K. Veselic,et al. Bound states and propagating states for time-dependent hamiltonians , 1983 .
[44] J. Moser,et al. The rotation number for almost periodic potentials , 1982 .