1-d Quantum harmonic oscillator with time quasi-periodic quadratic perturbation: Reducibility and growth of Sobolev norms

[1]  E. Faou,et al.  On weakly turbulent solutions to the perturbed linear Harmonic oscillator , 2020, 2006.08206.

[2]  Laurent Thomann,et al.  Growth of Sobolev norms for coupled lowest Landau level equations , 2020, Pure and Applied Analysis.

[3]  Jiawen Luo,et al.  Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations , 2020, Journal of Differential Equations.

[4]  B. Grébert,et al.  Reducibility of Schrödinger Equation on the Sphere , 2020 .

[5]  R. Feola,et al.  Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential , 2019, 1910.10657.

[6]  R. Feola,et al.  Reducibility of Schr\"odinger equation on the sphere. , 2019, 1905.11964.

[7]  Riccardo Montalto,et al.  Reducibility of Non-Resonant Transport Equation on $${\mathbb {T}}^d$$Td with Unbounded Perturbations , 2018, Annales Henri Poincaré.

[8]  A. Maspero Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations , 2018, Mathematical Research Letters.

[9]  Riccardo Montalto,et al.  Reducibility of first order linear operators on tori via Moser's theorem , 2018, Journal of Functional Analysis.

[10]  Zhenguo Liang,et al.  Reducibility of quantum harmonic oscillator on Rd with differential and quasi-periodic in time potential , 2017, Journal of Differential Equations.

[11]  B. Grébert,et al.  On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential , 2019, Annales de la Faculté des sciences de Toulouse : Mathématiques.

[12]  Riccardo Montalto,et al.  Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations. III , 2018, Journal of Mathematical Physics.

[13]  Riccardo Montalto A P ] 9 A ug 2 01 7 A reducibility result for a class of linear wave equations on T d , 2018 .

[14]  B. Grébert,et al.  On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time potential , 2018 .

[15]  J. You,et al.  Asymptotics of spectral gaps of quasi-periodic Schrödinger operators , 2017, 1712.04700.

[16]  D. Robert,et al.  Growth of Sobolev norms for abstract linear Schrödinger equations , 2017, Journal of the European Mathematical Society.

[17]  D. Robert,et al.  Reducibility of the Quantum Harmonic Oscillator in $d$-dimensions with Polynomial Time Dependent Perturbation , 2017, 1702.05274.

[18]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2017, Communications in Mathematical Physics.

[19]  D. Robert,et al.  On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms , 2016, 1610.03359.

[20]  Zhenguo Liang,et al.  Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay , 2016, 1605.05480.

[21]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2016, Communications in Mathematical Physics.

[22]  B. Gr'ebert,et al.  On reducibility of Quantum Harmonic Oscillator on $\mathbb{R}^d$ with quasiperiodic in time potential , 2016, 1603.07455.

[23]  Jean-Marc Delort Growth of Sobolev Norms for Solutions of Time Dependent Schrödinger Operators with Harmonic Oscillator Potential , 2014 .

[24]  J. You,et al.  Embedding of Analytic Quasi-Periodic Cocycles into Analytic Quasi-Periodic Linear Systems and its Applications , 2012, 1202.2911.

[25]  B. Grébert,et al.  KAM for the Quantum Harmonic Oscillator , 2010, 1003.2793.

[26]  Xiaoping Yuan,et al.  Spectrum for quantum duffing oscillator and small‐divisor equation with large‐variable coefficient , 2010 .

[27]  Sergei Kuksin,et al.  KAM for the nonlinear Schrödinger equation , 2010 .

[28]  A. Avila,et al.  The Ten Martini Problem , 2009 .

[29]  Sana Hadj Amor Hölder Continuity of the Rotation Number for Quasi-Periodic Co-Cycles in $${SL(2, \mathbb R)}$$ , 2009 .

[30]  S. Kuksin,et al.  On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .

[31]  A. Avila,et al.  Almost localization and almost reducibility , 2008, 0805.1761.

[32]  W.-M. Wang,et al.  Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.

[33]  Faculty of Computer Science,et al.  Weakly Regular Floquet Hamiltonians with Pure Point Spectrum , 2001, math-ph/0103041.

[34]  D. Bambusi,et al.  Time Quasi-Periodic Unbounded Perturbations¶of Schrödinger Operators and KAM Methods , 2000, math-ph/0010002.

[35]  K. Yajima,et al.  Absolute Continuity of the Floquet Spectrum¶for a Nonlinearly Forced Harmonic Oscillator , 2000, math-ph/0003007.

[36]  J. Bourgain Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential , 1999 .

[37]  Manuel Mañas,et al.  Darboux transformations for the nonlinear Schrödinger equations , 1996 .

[38]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[39]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[40]  M. Combescure The quantum stability problem for time-periodic perturbations of the harmonic oscillator , 1987 .

[41]  M. Loss,et al.  Non-stochasticity of time-dependent quadratic Hamiltonians and the spectra of canonical transformations , 1986 .

[42]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[43]  K. Veselic,et al.  Bound states and propagating states for time-dependent hamiltonians , 1983 .

[44]  J. Moser,et al.  The rotation number for almost periodic potentials , 1982 .