Application of Well-Base Surrogate Reservoir Models (SRMs) to Two Offshore Fields in Saudi Arabia, Case Study

Well-based Surrogate Reservoir Model (SRM) may be classified as a new technology for building proxy models that represent large, complex numerical reservoir simulation models. The well-based SRM has several advantages over traditional proxy models, such as response surfaces or reduced models. These advantages include (1) to develop an SRM one does not need to approximate the existing simulation model, (2) the number of simulation runs required for the development of an SRM is at least an order of magnitude less than traditional proxy models, and (3) above and beyond representing the pressure and production profiles at each well individually, SRM can replicate, with high accuracy, the pressure and saturation changes at each grid block. Well-based SRM is based on the pattern recognition capabilities of artificial intelligence and data mining (AI&DM) that is also referred to as predictive analytics. During the development process the SRM is trained to learn the principles of fluid flow through porous media as applied to the complexities of the reservoir being modeled. The numerical reservoir simulation model is used for two purposes: (1) to teach the SRM the physics of fluid flow through porous media as applied to the specific reservoir that is being modeled, and (2) to teach the SRM the complexities of the heterogeneous reservoir represented by the geological model and its impact on the fluid production and pressure changes in the reservoir. Application of well-based SRM to two offshore fields in Saudi Arabia is demonstrated. The simulation model of these fields includes millions of grid blocks and tens of producing and injection wells. There are four producing layers in these assets that are contributing to production. In this paper we provide the details that is involved in development of the SRM and show the result of matching the production from the all the wells. We also present the validation of the SRM through matching the results of blind simulation runs. The steps in the development of the SRM includes design of the required simulation runs (usually less than 20 simulation runs are sufficient), identifying the key performance indicators that control the pressure and production in the model, identification of input parameters for the SRM, training and calibration of the SRM and finally validation of the SRM using blind simulation runs.