Spatiotemporal volume saliency

This paper proposes spatiotemporal volume saliency to detect and explore salient regions in time-varying volume data. Based on the center-surround hypothesis that the salient region stands out from its surroundings, we extend the spatial saliency to time domain and introduce temporal volume saliency. It is defined as a center-surround operator on Gaussian-weighted mean attribute gradient between steps in a scale-independent manner. By combing spatial saliency and temporal saliency together, our spatiotemporal volume saliency is effective in detecting changes of salient regions. We demonstrate its utility in this regard by automating transfer function design and selecting key frames for time-varying volume data.Graphical abstract

[1]  Min Chen,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 a Salience-based Quality Metric for Visualization , 2022 .

[2]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[3]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Bharat K. Soni,et al.  EVITA — Efficient Visualization and Interrogation of Tera-Scale Data , 2001 .

[5]  Ching-Kuang Shene,et al.  Hierarchical Streamline Bundles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Amitabh Varshney,et al.  Saliency-guided Enhancement for Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Qi Zhao,et al.  Learning saliency-based visual attention: A review , 2013, Signal Process..

[8]  Jordi Campos Miralles,et al.  Time-varying volume visualization , 2005 .

[9]  Wonjun Kim,et al.  Spatiotemporal Saliency Detection and Its Applications in Static and Dynamic Scenes , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[10]  Han-Wei Shen,et al.  Dynamic View Selection for Time-Varying Volumes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[11]  Jinho Lee The Transfer Function BakeOff , 2001 .

[12]  Jian Zhang,et al.  Efficient Volume Exploration Using the Gaussian Mixture Model. , 2011, IEEE transactions on visualization and computer graphics.

[13]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[14]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[15]  T. Poggio,et al.  Predicting the visual world: silence is golden , 1999, Nature Neuroscience.

[16]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[17]  T. J. Jankun-Kelly,et al.  A Study of Transfer Function Generation for Time-Varying Volume Data , 2001, VG.

[18]  Eli Shechtman,et al.  Cosaliency: where people look when comparing images , 2010, UIST.

[19]  Kwan-Liu Ma,et al.  Visualizing time-varying volume data , 2003, Comput. Sci. Eng..

[20]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[21]  Chaoli Wang,et al.  Information Theory in Scientific Visualization , 2011, Entropy.

[22]  Jian Zhang,et al.  Efficient Volume Exploration Using the Gaussian Mixture Model , 2011, IEEE Transactions on Visualization and Computer Graphics.