VIS: the visible imager for Euclid

Euclid-VIS is a large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2019. Together with the near infrared imaging within the NISP instrument it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2240 sec, VIS will reach to V=24.5 (10σ) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy imaging dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the Euclid Definition phase.

N. Murray | Edinburgh | R. Cole | D. Walton | J. Amiaux | P. Gondoin | Orsay | France | Orme des Merisiers | L. Genolet | Leiden | Research | Scientific Support Department | Surrey | P. Guttridge | J. Endicott | L. Duvet | P. Thomas | Roma | Y. Mellier | J. Martignac | C. Cara | H. Hoekstra | Mark Cropper | A. James | A.-M. Di Giorgio | S. Paltani | J.-J. Fourmond | K. Rees | P. Pool | A. Holland | J. Gow | J.-L. Augueres | R Laureijs | T. Kitching | R. Massey | European Space Research | Noordwijk | Centre for Medical Imaging | The University of Edinburgh | R. Laureijs | J. Amiaux | J. Auguères | R. Cole | M. Cropper | L. Duvet | P. Gondoin | H. Hoekstra | T. Kitching | Y. Mellier | R. Massey | S. Paltani | P. Guttridge | A. James | J. Martignac | D. Walton | J. Gow | A. Holland | UK. | Versoix | Switzerland. | I. Paris | París | -INAF | U. London | L. Genolet | United Kingdom. | M. Keynes | P. Pool | The Netherlands. | Service d'astrophysique | C. Cara | J. Fourmond | T. Centre | L. Observatory | K. Rees | N. Murray | T. O. University | J. Endicott | P. Thomas | A. di Giorgio | The Netherlands Institute for Radio Astronomy | S. R. Institute | Essex | I. D. C. F. Astrophysics | Istituto di Astrofisica e Planetologia Spaziali | D. University | G. Yvette | Durham | I. D. Spatiale | D. Physics | C. A. L. Atomique | R. Observatory | Planetary | Italy. | Euromonitor Plc | A. M. Giorgio | H. Laboratory | the Euclid collaboration Mullard Space Science Laboratory | Campus Universitaire d'Orsay

[1]  Andrew Holland,et al.  In situ trap parameter studies in CCDs for space applications , 2014, Astronomical Telescopes and Instrumentation.

[2]  R. Laureijs,et al.  Euclid: ESA's mission to map the geometry of the dark universe , 2012, Other Conferences.

[3]  R. Laureijs,et al.  The Euclid VIS CCD detector design, development, and programme status , 2014, Astronomical Telescopes and Instrumentation.

[4]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[5]  J. Amiaux,et al.  Defining a weak lensing experiment in space , 2012, 1210.7691.

[6]  Roberto Scaramella,et al.  Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) , 2012, 1210.7690.

[7]  A. Ealet,et al.  Euclid mission: building of a reference survey , 2012, Other Conferences.

[8]  J. P. D. Gow,et al.  Assessment of proton radiation-induced charge transfer inefficiency in the CCD273 detector for the Euclid Dark Energy Mission , 2012, Other Conferences.

[9]  Jerome Amiaux,et al.  Euclid payload module: telescope characteristics and technical challenges , 2014, Astronomical Telescopes and Instrumentation.

[10]  Roberto Scaramella,et al.  The data handling unit of the Euclid imaging channels: from the observational requirements to the unit architecture , 2010, Astronomical Telescopes + Instrumentation.

[11]  Alexie Leauthaud,et al.  Pixel-based correction for Charge Transfer Inefficiency in the Hubble Space Telescope Advanced Camera for Surveys , 2009, 0909.0507.

[12]  Mark Cropper,et al.  Measuring a charge-coupled device point spread function , 2014, 1412.5382.

[13]  Frank Eisenhauer,et al.  The focal plane instrumentation for the DUNE mission , 2008, Astronomical Telescopes + Instrumentation.

[14]  Roberto Scaramella,et al.  On the shear estimation bias induced by the spatial variation of colour across galaxy profiles. , 2012, 1211.5025.

[15]  G. Li Causi,et al.  Software design for the VIS instrument onboard the Euclid mission: a multilayer approach , 2014, Astronomical Telescopes and Instrumentation.

[16]  M. Cropper,et al.  The impact of galaxy colour gradients on cosmic shear measurement , 2011, 1105.5595.

[17]  David Hall,et al.  An improved model of charge transfer inefficiency and correction algorithm for the Hubble Space Telescope , 2014, 1401.1151.

[18]  Ivan Kotov,et al.  Pocket pumped image analysis , 2014, Astronomical Telescopes and Instrumentation.

[19]  D. Walton,et al.  Charge-coupled devices for the ESA Euclid M-class Mission , 2012, Other Conferences.

[20]  Richard Cole,et al.  Thermomechanical architecture of the VIS focal plane for Euclid , 2014, Astronomical Telescopes and Instrumentation.

[21]  A. Amara,et al.  Euclid Imaging Consortium Science Book , 2010 .