Prediction of Exchange Coupling Constant for Mn12 Molecular Magnet Using Dft+U

Single-molecule magnets are perspective materials for molecular spintronic applications. Predictions of magnetic coupling in these systems have posed a long standing problem, as calculations of this kind require a balanced description of static and dynamic electron correlation. The large size of these systems limits the choice of theoretical methods used. Two methods feasible to predict the exchange coupling parameters are broken symmetry Density Functional Theory (BSDFT) and DFT with empirical Hubbard U parameter (DFT+U). In this contribution we apply DFT+U to study Mn-based molecular magnets using Vanderbilt Ultrasoft Pseudopotential plane wave DFT method, implemented in Quantum ESPRESSSO code. Unlike most previous studies, we adjust U parameters for both metal and ligand atoms using two dineuclear molecular magnets [Mn2 O2 (phen)4 ]2 + and [Mn2 O2 (OAc)(Me4 dtne)]3 + as the benchmarks. Next, we apply this methodology to Mn12 molecular wheel. Our study finds antiparallel spin alignment in weakly interacting fragments of Mn12 , in agreement with experimental observations.

[1]  M. Sarachik,et al.  Steps in the hysteresis loops of a high‐spin molecule , 1996 .

[2]  I. Ciofini,et al.  DFT calculations of molecular magnetic properties of coordination compounds , 2003 .

[3]  G. Christou,et al.  A high-spin molecular wheel from self-assembled 'Mn rods'. , 2007, Dalton transactions.

[4]  L. Zakharov,et al.  Wheel-shaped [Mn12] single-molecule magnets. , 2005, Inorganic chemistry.

[5]  W. Richardson,et al.  Density Functional Calculations of Electronic Structure, Charge Distribution, and Spin Coupling in Manganese-Oxo Dimer Complexes. , 1997, Inorganic chemistry.

[6]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[7]  W. Wernsdorfer,et al.  DFT computational rationalization of an unusual spin ground state in an Mn12 single-molecule magnet with a low-symmetry loop structure. , 2005, Angewandte Chemie.

[8]  H. Buergi,et al.  ((phen)2Mn(IV)(μ-O)2Mn(III)(phen)2)(PF6)3·CH3CN and ((phen)2Mn(IV)(μ-O)2Mn(IV)(phen)2)(ClO4)4·CH3CN (phen: 1,10-Phenanthroline): Crystal Structure Analyses at 100 K, Interpretation of Disorder, and Optical, Magnetic, and Electrochemical Results , 1987 .

[9]  G. Christou,et al.  Single-molecule magnets: preparation and properties of mixed-carboxylate complexes. , 2001, Inorganic chemistry.

[10]  Abhik Ghosh,et al.  High-level ab initio calculations on the energetics of low-lying spin states of biologically relevant transition metal complexes: a first progress report. , 2003, Current opinion in chemical biology.

[11]  K. Wieghardt,et al.  Electronic Structure of Antiferromagnetically Coupled Dinuclear Manganese (MnIIIMnIV) Complexes Studied by Magnetic Resonance Techniques , 1998 .

[12]  W. Wernsdorfer,et al.  One-dimensional chain of tetranuclear manganese single-molecule magnets. , 2005, Inorganic chemistry.

[13]  W. Wernsdorfer,et al.  Linking rings through diamines and clusters: exploring synthetic methods for making magnetic quantum gates. , 2005, Angewandte Chemie.

[14]  W. Wernsdorfer,et al.  New structural motifs in manganese single-molecule magnetism from the use of triethanolamine ligands. , 2005, Angewandte Chemie.

[15]  H. Buergi,et al.  Tetrakis(phenanthroline)di-.mu.-oxodimanganese(III,IV) tris(hexafluorophosphate).cntdot.acetonitrile and tetrakis(phenanthroline)di-.mu.-oxodimanganese(IV) tetraperchlorate.cntdot.acetonitrile: crystal structure analyses at 100 K, interpretation of disorder, and optical, magnetic, and electrochemica , 1986 .

[16]  McMahan,et al.  Calculated effective Hamiltonian for La2CuO4 and solution in the impurity Anderson approximation. , 1988, Physical review. B, Condensed matter.

[17]  W. Weltner,et al.  High-spin molecules , 1980 .

[18]  H. Ågren,et al.  Heisenberg Exchange in Dinuclear Manganese Complexes:  A Density Functional Theory Study. , 2006, Journal of chemical theory and computation.

[19]  P. Taylor Weakly coupled transition-metal centres: high-level calculations on a model Fe(IV)-Fe(IV) system. , 2006, Journal of inorganic biochemistry.

[20]  Dante Gatteschi,et al.  High-spin molecules: [Mn12O12(O2CR)16(H2O)4] , 1993 .

[21]  S. N. Datta,et al.  Theoretical investigation of magnetic properties of a dinuclear copper complex [Cu2(μ-OAc)4(MeNHpy)2] , 2006 .

[22]  Nicola Marzari,et al.  Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators , 1997 .

[23]  D. Adams,et al.  Distorted MnIVMnIII3 Cubane Complexes as Single-Molecule Magnets , 1996 .

[24]  A. Rheingold,et al.  Antiferromagnetic tetranuclear manganese complex: Wheel or dicubane? , 2007 .

[25]  K. Awaga,et al.  Single-molecule magnets: a new class of tetranuclear manganese magnets. , 2000, Inorganic chemistry.

[26]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[27]  W. Wernsdorfer,et al.  Making "wheels" and "cubes" from triangles. , 2006, Dalton transactions.

[28]  S. Hill,et al.  Strongly correlated electrons in the [Ni(hmp)(ROH)X]4 single molecule magnet: a DFT+U study. , 2008, Physical review letters.