Unimodular random trees

Abstract We consider unimodular random rooted trees (URTs) and invariant forests in Cayley graphs. We show that URTs of bounded degree are the same as the law of the component of the root in an invariant percolation on a regular tree. We use this to give a new proof that URTs are sofic, a result of Elek. We show that ends of invariant forests in the hyperbolic plane converge to ideal boundary points. We also note that uniform integrability of the degree distribution of a family of finite graphs implies tightness of that family for local convergence, also known as random weak convergence.

[1]  Béla Bollobás,et al.  Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.

[2]  Nicolas Curien,et al.  Ergodic theory on stationary random graphs , 2010, 1011.2526.

[3]  Gábor Elek On the limit of large girth graph sequences , 2010, Comb..

[4]  M. Barlow,et al.  Exponential tail bounds for loop-erased random walk in two dimensions , 2009, 0910.5015.

[5]  G. Elek,et al.  Sofic equivalence relations , 2009, 0906.3619.

[6]  Russell Lyons,et al.  A measurable-group-theoretic solution to von Neumann’s problem , 2007, 0711.1643.

[7]  Greg Hjorth A lemma for cost attained , 2006, Ann. Pure Appl. Log..

[8]  M. Aizenman,et al.  The Canopy Graph and Level Statistics for Random Operators on Trees , 2006, math-ph/0607021.

[9]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[10]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[11]  L. Bowen Periodicity and Circle Packings of the Hyperbolic Plane , 2003, math/0304344.

[12]  O. Schramm,et al.  Uniform Infinite Planar Triangulations , 2002, math/0207153.

[13]  Ilya Kapovich,et al.  Boundaries of hyperbolic groups , 2002, math/0202286.

[14]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[15]  I. Benjamini,et al.  Percolation in the hyperbolic plane , 1999, math/9912233.

[16]  Russell Lyons,et al.  Group-invariant Percolation on Graphs , 1999 .

[17]  A. Teplyaev Spectral Analysis on Infinite Sierpiński Gaskets , 1998 .

[18]  I. Benjamini,et al.  Percolation Perturbations in Potential Theory and Random Walks , 1998, math/9804010.

[19]  R. Pemantle,et al.  Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.

[20]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[21]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[22]  M. Raghunathan Discrete subgroups of Lie groups , 1972 .

[23]  M. Raghunathan,et al.  Fundamental Domains for Lattices in (R-)rank 1 Semisimple Lie Groups , 1970 .

[24]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .