Opportunities for Advanced Ceramics and Composites in the Nuclear Sector

Ceramics have played a crucial role in the development of fission based nuclear power, in glass & glass composite high level wasteforms, in composite cements to encapsulate intermediate level wastes (ILW) and also for oxide nuclear fuels based on UO2 and PuO2/UO2 mixed oxides. They are also used as porous filters with the ability to absorb radionuclides (RN) from air and liquids and are playing a key role in the cleanup at Fukushima. Non-oxides also find current fission applications including in graphite moderators and B4C control rods. Ceramics will continue to be significant in the near-term expansion of nuclear power via next-step developments of fuels with inert matrices or based on thoria and in wasteforms using alternative composite cements or single or multiphase ceramics that can host Pu & other difficult RN. Longer term advances for Generation IV reactors, which will operate at higher temperatures & with higher fuel burn-up require innovative fuel developments potentially via carbides & nitrides or composite fuel systems. Novel non-thermal (cement-like) and thermal techniques are currently being developed to treat some of the difficult legacy wastes. Non-thermally derived wasteforms developed from geopolymers, composite cements, hydroceramics, and phosphate-bonded ceramics and thermally derived wasteforms made by Hot Isostatic Pressing and fluidized bed steam reforming (FBSR) as well as vitrification techniques based on cold crucible melting (CCM), Joule-heater in-container melting and plasma melting (PM) are described. Future developments in waste treatment will be based on separation technologies for partitioning individual RN along with design & construction of RN-containing ceramic targets for inducing transmutation reactions. Near demonstration actinide-hosting ceramic wasteforms including multiphase Synroc systems are described. Opportunities also exist for ceramics in structural applications in Generation IV reactors such as composite SiC/SiC and C/C for fuel cladding and control rods and MAX phases and ultrahigh-temperature ceramics (UHTCs) may find near core fuel coating and cladding applications. Uses of ceramics in fusion reactor systems will be both functional (ceramic superconductors in magnet systems for plasma control and in Li silicate breeder blankets in tokamaks) and structural including as sapphire diagnostic windows, graphite diverters, and plasma facing C and UHTCs. In all these cases, performance is limited by poorly understood radiation damage and interface controlled processes, which demands a combined modeling/experimental approach.

[1]  Blas P. Uberuaga,et al.  U and Xe transport in UO2±x: Density functional theory calculations , 2011 .

[2]  P. Fenici,et al.  Advanced low-activation materials. Fibre-reinforced ceramic composites , 1994 .

[3]  L. V. Brutzel,et al.  Large molecular dynamics simulations of collision cascades in single-crystal, bi-crystal, and poly-crystal UO2 , 2009 .

[4]  R. Ewing,et al.  Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wastes , 2003 .

[5]  M. Verwerft,et al.  On the solution and migration of single Xe atoms in uranium dioxide – An interatomic potentials study , 2010 .

[6]  W. J. Weber,et al.  Helium behaviour in waste conditioning matrices during thermal annealing , 2006 .

[7]  R. Ewing,et al.  Ion-beam-induced amorphization and order-disorder transition in the murataite structure , 2005 .

[8]  J. Laan,et al.  4.15 – Ceramic Breeder Materials , 2012 .

[9]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[10]  William E Lee,et al.  Krypton and helium irradiation damage in neodymium–zirconolite , 2011 .

[11]  S. M. Corish,et al.  Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. , 2007, Nature materials.

[12]  Russel H. Jones,et al.  Stress-Corrosion Cracking of Silicon Carbide Fiber/Silicon Carbide Composites , 2004 .

[13]  J. I. Kim,et al.  Solubility and hydrolysis of tetravalent actinides , 2001 .

[14]  R. Matthews,et al.  Nuclear fuel pellets fabricated from gel-derived microspheres , 1980 .

[15]  E. Vance,et al.  Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization , 2007 .

[16]  R. V. D. Laan,et al.  The fabrication and irradiation of plutonium-containing inert matrix fuels for the ‘Once Though Then Out’ experiment , 2003 .

[17]  W. J. Weber,et al.  Radiation effects in nuclear waste forms for high-level radioactive waste , 1995 .

[18]  P. Swift,et al.  Phosphate modified calcium aluminate cement for radioactive waste encapsulation , 2013 .

[19]  M. Maloney,et al.  Investigations in Ceramicrete Stabilization of Hanford Tank Wastes , 2003 .

[20]  K. Sawa 3.06 – TRISO Fuel Production , 2012 .

[21]  G. F. Counsell,et al.  First physics results from the MAST Mega-Amp Spherical Tokamak , 2001 .

[22]  G. Guthrie,et al.  Preparation of monophasic [NZP] radiophases: Potential host matrices for the immobilization of reprocessed commercial high-level wastes , 1996 .

[23]  L. V. Brutzel,et al.  Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2 , 2012 .

[24]  C. Hellwig,et al.  Fabrication and microstructure characterization of inert matrix fuel based on yttria stabilized zirconia , 2005 .

[25]  M. Barsoum,et al.  MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis , 2012 .

[26]  C. R. A. Catlow,et al.  The stability of fission products in uranium dioxide , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[27]  M. I. Ojovan,et al.  Glass Composite Materials for Nuclear and Hazardous Waste Immobilisation , 2008 .

[28]  C. Hellwig,et al.  Study of a zirconia based inert matrix fuel under irradiation , 2003 .

[29]  Brian D. Wirth,et al.  Fusion materials modeling: Challenges and opportunities , 2011 .

[30]  E. Merz,et al.  Immobilization of intermediate-level wastes in geopolymers , 1994 .

[31]  R. Konings,et al.  Transmutation of actinides in inert-matrix fuels: fabrication studies and modelling of fuel behaviour , 1999 .

[32]  H. Matzke,et al.  Optimisation of inert matrix fuel concepts for americium transmutation , 1999 .

[33]  R. Ewing,et al.  Radiation effects in ferrate garnet , 2005 .

[34]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[35]  Rock-Like Oxide Fuels and Their Burning in LWRs , 2002 .

[36]  M. K. Meyer,et al.  Irradiation testing of actinide transmutation fuels in the advanced test reactor. , 2001 .

[37]  B. Burakov,et al.  Synthesis and Study of 239 Pu-Doped Gadolinium-Aluminum Garnet , 1999 .

[38]  William J. Nuttall,et al.  The management of separated plutonium: An introduction , 2007 .

[39]  Jie Lian,et al.  Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides , 2004 .

[40]  M. Genet,et al.  Investigations of systems ThO2–MO2–P2O5 (M=U, Ce, Zr, Pu). Solid solutions of thorium–uranium (IV) and thorium–plutonium (IV) phosphate–diphosphates , 1998 .

[41]  H. Takano,et al.  Core design study on rock-like oxide fuel light water reactor and improvements of core characteristics , 1999 .

[42]  W. E. Coons,et al.  High performance cement-based grouts for use in a nuclear waste disposal facility , 1992 .

[43]  Lyndon Edwards,et al.  Greater tolerance for nuclear materials. , 2008, Nature materials.

[44]  D. Prieur,et al.  Coupling XRD, EXAFS, and 13C NMR to study the effect of the carbon stoichiometry on the local structure of UC(1±x). , 2013, Inorganic chemistry.

[45]  B.R.T. Frost,et al.  The carbides of uranium , 1963 .

[46]  Satoru Tanaka,et al.  Overview of the TBM R&D activities in Japan , 2010 .

[47]  W. E. Lee,et al.  Nuclear waste: a UK perspective , 2006 .

[48]  R. L. Petty,et al.  Fabrication and testing of uranium nitride fuel for space power reactors , 1988 .

[49]  R. E. Moore,et al.  Evolution of in Situ Refractories in the 20th Century , 1998 .

[50]  Claude Degueldre,et al.  Groundwater colloid properties: a global approach , 2000 .

[51]  H. Tagawa,et al.  Formation of uranium mononitride by the reaction of uranium dioxide with carbon in ammonia and a mixture of hydrogen and nitrogen— I synthesis of high purity UN , 1977 .

[52]  L. René Corrales,et al.  Molecular dynamics simulation of Xe bubble nucleation in nanocrystalline UO2 nuclear fuel , 2011 .

[53]  Yasunori Kaneta,et al.  Interplay of defect cluster and the stability of xenon in uranium dioxide from density functional calculations , 2010, 1008.4476.

[54]  G. Brumfiel,et al.  Fukushima deep in hot water , 2011, Nature.

[55]  Steven J. Zinkle,et al.  Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium , 1998 .

[56]  Claude Degueldre,et al.  Concepts for an inert matrix fuel, an overview , 1999 .

[57]  A. E. Ringwood,et al.  Alpha-recoil damage in natural zirconolite and perovskite. , 1981 .

[58]  J. Maguire,et al.  Oxygen migration in A2B2O7 pyrochlores , 2001 .

[59]  Thermal recrystallization of alpha-recoil damaged minerals of the pyrochlore structure type , 1986 .

[60]  William E Lee,et al.  Laser Melting of Zirconium Carbide: Determination of Phase Transitions in Refractory Ceramic Systems , 2011 .

[61]  D. Haas,et al.  Mixed-oxide fuel fabrication technology and experience at the BELGONUCLEAIRE and CFCa plants and further developments for the MELOX plant , 1994 .

[62]  R. Ewing,et al.  Ion-beam and electron-beam irradiation of synthetic britholite , 2003 .

[63]  M. Yui,et al.  Database development of glass dissolution and radionuclide migration for performance analysis of HLW repository in Japan , 2001 .

[64]  James L. Krumhansl,et al.  Low‐Temperature Sintering Bi–Si–Zn‐Oxide Glasses for Use in Either Glass Composite Materials or Core/Shell 129I Waste Forms , 2011 .

[65]  Mizuki Sakamoto,et al.  Objectives and design of the JT-60 superconducting tokamak , 2003 .

[66]  M. I. Ojovan,et al.  Immobilization of Nuclear Waste Graphite Using the SiC Synthesis Route - 11484 , 2011 .

[67]  C. Degueldre,et al.  Control of civilian plutonium inventories using burning in a non-fertile fuel , 1997 .

[68]  H. Blank,et al.  Specification and characterization of dense fuels for liquid metal cooled fast breeder reactors , 1988 .

[69]  Pavel R. Hrma,et al.  Low Temperature Waste Immobilization Testing Vol. I , 2006 .

[70]  K. Sun,et al.  In situ TEM of radiation effects in complex ceramics , 2009, Microscopy research and technique.

[71]  D. Haas,et al.  Fuel cycle strategies and plutonium management in Europe , 2007 .

[72]  Katherine L. Smith,et al.  Actinide and rare earth incorporation into zirconolite , 1994 .

[73]  A. Ying,et al.  Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review , 2005 .

[74]  Pavel Straka,et al.  Radioactive Metal Isotopes Stabilized in a Geopolymer Matrix: Determination of a Leaching Extract by a Radiotracer Method , 2006 .

[75]  A. Kohyama,et al.  Influence of pyrolytic carbon interface thickness on microstructure and mechanical properties of SiC/SiC composites by NITE process , 2008 .

[76]  M. I. Ojovan,et al.  Immobilisation of radioactive waste in glasses, glass composite materials and ceramics , 2006 .

[77]  Hartmann,et al.  Radiation tolerance of complex oxides , 2000, Science.

[78]  Y. Arai 3.02 – Nitride Fuel , 2012 .

[79]  R C Ewing,et al.  Nuclear waste forms for actinides. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Bruce Matthews,et al.  Uranium-plutonium carbide fuel for fast breeder reactors , 1983 .

[81]  Z. Wen,et al.  Fabrication of Li4SiO4 pebbles by a sol–gel technique , 2010 .

[82]  M. I. Ojovan,et al.  Vitrification processes for low, intermediate radioactive and mixed wastes , 2005 .

[83]  G. Lumpkin,et al.  Alpha-decay damage and aqueous durability of actinide host phases in natural systems , 2001 .

[84]  S. Stefanovsky,et al.  Isomorphic Capacity of Synthetic Sphene With Respect to Gd and U , 1999 .

[85]  G. Roth,et al.  Crystallisation and microstructure of lithium orthosilicate pebbles , 2007 .

[86]  M. Cologna,et al.  Thermal diffusivity and conductivity of thorium- uranium mixed oxides , 2011 .

[87]  Anton Möslang,et al.  IFMIF – An international fusion materials irradiation facility , 1998 .

[88]  D. Vollath,et al.  Radiation Damage in Lithium Orthosilicate , 1993 .

[89]  Xiang Gao,et al.  Diagnostics for first plasma study on EAST tokamak , 2008 .

[90]  William E Lee,et al.  Krypton irradiation damage in Nd-doped zirconolite and perovskite , 2011 .

[91]  R. D. Leggett,et al.  Advancing liquid metal reactor technology with nitride fuels , 1991 .

[92]  R. Schram,et al.  Plutonium management with thorium-based fuels and inert matrix fuels in thermal reactor systems , 2007 .

[93]  Bruce D. Begg,et al.  Charge Compensation in Gd-Doped CaTiO3 , 1996 .

[94]  H. S. Kamath,et al.  Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O2 mixed oxide pellets , 2012 .

[95]  T. Muroga 4.21 – Ceramic Coatings as Electrical Insulators in Fusion Blankets , 2012 .

[96]  Douglas E. Burkes,et al.  A US perspective on fast reactor fuel fabrication technology and experience. Part II: Ceramic fuels , 2009 .

[97]  Yong-Seok Hwang,et al.  Design and construction of the KSTAR tokamak , 2001 .

[98]  K. Brinkman,et al.  Development of Ceramic Waste Forms for an Advanced Nuclear Fuel Cycle , 2011 .

[99]  T. Ohmichi,et al.  Irradiation behavior of rock-like oxide fuels , 2003 .

[100]  A. Talamo,et al.  Alternative configurations for the QUADRISO fuel design concept , 2009 .

[101]  Mark S. Tillack,et al.  Design and material issues for high performance SiCf/SiC-based fusion power cores , 2001 .

[102]  M. Jenkins,et al.  A tem study of heavy-ion irradiation damage in α-Al2O, with and without helium doping , 1984 .

[103]  A. Kohyama,et al.  Recent advances and issues in development of silicon carbide composites for fusion applications , 2009 .

[104]  A. Boccaccini,et al.  Hot‐Pressed Glass Matrix Composites Containing Pyrochlore Phase Particles for Nuclear Waste Encapsulation , 2003 .

[105]  H. Kleykamp,et al.  The chemical state of the fission products in oxide fuels , 1985 .

[106]  E. Vance,et al.  Development of geopolymers for nuclear waste immobilisation , 2011 .

[107]  W. J. Weber,et al.  The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides , 1997 .

[108]  H. S. Kamath,et al.  3.03 – Carbide Fuel , 2012 .

[109]  J. Somers,et al.  Infiltration of highly radioactive materials: a novel approach to the fabrication of targets for the transmutation and incineration of actinides , 1997 .

[110]  C. Ronchi,et al.  Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t−1 , 2004 .

[111]  William E Lee,et al.  Microstructural Development on Firing Illite and Smectite Clays Compared with that in Kaolinite , 2005 .

[112]  P. Medvedev,et al.  Fabrication and characterization of dual phase magnesia–zirconia ceramics doped with plutonia , 2005 .

[113]  M. I. Ojovan,et al.  Microstructure and leaching durability of glass composite wasteforms for spent clinoptilolite immobilisation , 2008 .

[114]  F. Glasser Application of inorganic cements to the conditioning and immobilisation of radioactive wastes , 2011 .

[115]  Yun Bao,et al.  Binders for radioactive waste forms made from pretreated calcined sodium bearing waste , 2004 .

[116]  Robin W. Grimes,et al.  Predicting the probability for fission gas resolution into uranium dioxide , 2009 .

[117]  Chin-Ching Tzeng,et al.  Treatment of radioactive wastes by plasma incineration and vitrification for final disposal , 1998 .

[118]  R. Ewing,et al.  Alpha-decay damage in minerals of the pyrochlore group , 1988 .

[119]  K. Idemitsu,et al.  Manufacturing of zirconia microspheres doped with erbia, yttria and ceria by internal gelation process as a part of a cermet fuel , 2003 .

[120]  S. Zhang,et al.  Castable refractory concretes , 2001 .

[121]  K. M. Chidester,et al.  Fuel fabrication processes, design and experimental conditions for the joint US-Swiss mixed carbide test in FFTF (AC-3 test) , 1993 .

[122]  J. Kittel,et al.  History of Fast-reactor Fuel Development , 1993 .

[123]  D. F. Carroll The System PuO2–ZrO2 , 1963 .

[124]  G. Parks,et al.  Nuclear energy: Thorium fuel has risks , 2012, Nature.

[125]  H. Tagawa,et al.  Formation of uranium mononitride by the reaction of uranium dioxide with carbon in ammonia and a mixture of hydrogen and nitrogen: II. Reaction rates , 1979 .

[126]  M. Heggie,et al.  Buckle, ruck and tuck: A proposed new model for the response of graphite to neutron irradiation , 2011 .

[127]  Declan Butler France digs deep for nuclear waste , 2010, Nature.

[128]  D. Duffy,et al.  Modelling materials for fusion power , 2011 .

[129]  C. A. Nash,et al.  RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT , 2012 .

[130]  T. C. Rowland,et al.  UO2 properties affecting performance , 1972 .

[131]  N. B. Milestone,et al.  Reactions in cement encapsulated nuclear wastes: need for toolbox of different cement types , 2006 .

[132]  D. Butt,et al.  Microstructural characterization and pore structure analysis of nuclear graphite , 2011 .

[133]  S. Sinnott,et al.  Critical assessment of UO2 classical potentials for thermal conductivity calculations , 2012, Journal of Materials Science.

[134]  Darryl D. Siemer,et al.  Hydroceramics, a "new" cementitious waste form material for U.S. defense-type reprocessing waste , 2002 .

[135]  C. Cheeseman,et al.  Thermal plasma technology for the treatment of wastes: a critical review. , 2009, Journal of hazardous materials.

[136]  George Paul Sabol,et al.  A new strain gage method for measuring the contractile strain ratio of Zircaloy tubing , 1988 .

[137]  U. Fischer,et al.  Revision of the EU helium cooled pebble bed blanket for DEMO , 2003, 20th IEEE/NPSS Symposium onFusion Engineering, 2003..

[138]  M. I. Ojovan,et al.  Glassy Wasteforms for Nuclear Waste Immobilization , 2011 .

[139]  A. Grandjean,et al.  Heat treatments versus microstructure in a molybdenum-rich borosilicate , 2004 .

[140]  Rudy J. M. Konings,et al.  Basic research in support of innovative fuels design for the GEn IV systems: The F-Bridge project. , 2011 .

[141]  W. J. Weber,et al.  Promise and challenges of SiCf/SiC composites for fusion energy applications , 2002 .

[142]  Carol M. Jantzen,et al.  Durable Glass for Thousands of Years , 2010 .

[143]  Bryan C. Chakoumakos,et al.  Crystal Chemical Constraints on the Formation of Actinide Pyrochlores , 1984 .

[144]  P. Deramaix,et al.  MOX fuel development: yesterday, today and tomorrow , 1992 .

[145]  J. Somers,et al.  Transmutation of Actinides , 2004 .

[146]  P. M. Ryan,et al.  Initial Physics Results From the National Spherical Torus Experiment , 2001 .

[147]  Robin W. Grimes,et al.  Molecular dynamics study of Xe bubble re-solution in UO2 , 2012 .

[148]  Neil B. Morley,et al.  Design requirements for SiC/SiC composites structural material in fusion power reactor blankets , 1998 .

[149]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[150]  R. Aymar,et al.  The ITER design , 2002 .

[151]  Laila A. El-Guebaly,et al.  Nuclear performance assessment of ARIES-AT , 2006 .

[152]  J. M. Leitnaker,et al.  CHEMICAL THERMODYNAMIC PROPERTIES OF NUCLEAR MATERIALS. I. URANIUM MONONITRIDE. , 1972 .

[153]  M. Limbäck,et al.  Advanced Doped UO2 Pellets in LWR Applications , 2006 .

[154]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[155]  Anil Kakodkar,et al.  Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor , 2006 .

[156]  Rodney C. Ewing,et al.  Plutonium and “minor” actinides: safe sequestration , 2005 .

[157]  Bryan C. Chakoumakos,et al.  Systematics of the pyrochlore structure type, ideal A2B2X6Y , 1984 .

[158]  Jet Team,et al.  Fusion energy-production from a deuterium-tritium plasma in the jet tokamak , 1992 .

[159]  S. Saito,et al.  Fabrication development of Li2O pebbles by wet process , 1998 .

[160]  S. Jitsukawa,et al.  High energy heavy ion induced structural disorder in Li2TiO3 , 2007 .

[161]  L. E. Thomas,et al.  Microstructural examination of oxidized spent PWR fuel by transmission electron microscopy , 1989 .

[162]  W. Nuttall,et al.  Generating the Option of a Two-Stage Nuclear Renaissance , 2010, Science.

[163]  G. Hollenberg,et al.  Spectroscopic study of lithium oxide irradiated by fast neutrons , 1994 .

[164]  W. J. Weber Radiation-induced swelling and amorphization in Ca2Nd8(SiO4)6O2 , 1983 .

[165]  Y. Arai,et al.  Preparation and characterization of PuN pellets containing ZrN and TiN , 2000 .

[166]  E. Vance,et al.  Solid Solubilities of Pu, U, Hf and Gd in Candidate Ceramic Phases for Actinide Waste Immobilization , 1999 .