Certification of Minimal Approximant Bases

For a given computational problem, a certificate is a piece of data that one (the prover) attaches to the output with the aim of allowing efficient verification (by the verifier) that this output is correct. Here, we consider the minimal approximant basis problem, for which the fastest known algorithms output a polynomial matrix of dimensions m x m and average degree D/m using O~(mømega D/m) field operations. We propose a certificate which, for typical instances of the problem, is computed by the prover using O(mømega D/m) additional field operations and allows verification of the approximant basis by a Monte Carlo algorithm with cost bound O(mømega + m D). Besides theoretical interest, our motivation also comes from the fact that approximant bases arise in most of the fastest known algorithms for linear algebra over the univariate polynomials; thus, this work may help in designing certificates for other polynomial matrix computations. Furthermore, cryptographic challenges such as breaking records for discrete logarithm computations or for integer factorization rely in particular on computing minimal approximant bases for large instances: certificates can then be used to provide reliable computation on outsourced and error-prone clusters.

[1]  Vincent Neiger,et al.  Bases of relations in one or several variables: fast algorithms and applications. (Bases de relations en une ou plusieurs variables : algorithmes rapides et applications) , 2016 .

[2]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[3]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[4]  George Labahn,et al.  Recursiveness in matrix rational interpolation problems , 1997 .

[5]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[6]  Jean-Guillaume Dumas,et al.  Certificates for Triangular Equivalence and Rank Profiles , 2017, ISSAC.

[7]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[8]  Erich Kaltofen,et al.  Quadratic-time certificates in linear algebra , 2011, ISSAC '11.

[9]  Arne Storjohann Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.

[10]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[11]  Erich Kaltofen,et al.  Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix , 2016, ISSAC.

[12]  GiorgiPascal,et al.  Dense Linear Algebra over Word-Size Prime Fields , 2008 .

[13]  George Labahn,et al.  Computing minimal nullspace bases , 2012, ISSAC.

[14]  George Labahn,et al.  Efficient algorithms for order basis computation , 2012, J. Symb. Comput..

[15]  Rusins Freivalds,et al.  Fast Probabilistic Algorithms , 1979, MFCS.

[16]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[17]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[18]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[19]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[20]  George Labahn,et al.  Unimodular completion of polynomial matrices , 2014, ISSAC.

[21]  Claude-Pierre Jeannerod,et al.  Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts , 2016, ISSAC.

[22]  Adhemar Bultheel,et al.  A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.

[23]  Jean-Guillaume Dumas,et al.  Matrix Multiplication Over Word-Size Modular Rings Using Approximate Formulas , 2016, ACM Trans. Math. Softw..

[24]  Giorgi Pascal Certification of Polynomial Middle Product , 2017 .

[25]  George Labahn,et al.  Shifted normal forms of polynomial matrices , 1999, ISSAC '99.

[26]  Erich Kaltofen,et al.  Essentially optimal interactive certificates in linear algebra , 2014, ISSAC.

[27]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[28]  George Labahn,et al.  Computing column bases of polynomial matrices , 2013, ISSAC '13.

[29]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[30]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[31]  Jean-Guillaume Dumas,et al.  Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages , 2006, TOMS.

[32]  Tracy Kimbrel,et al.  A Probabilistic Algorithm for Verifying Matrix Products Using O(n²) Time and log_2 n + O(1) Random Bits , 1993, Inf. Process. Lett..

[33]  Arjen K. Lenstra,et al.  Computation of a 768-Bit Prime Field Discrete Logarithm , 2017, EUROCRYPT.

[34]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.