Future progress in turbulent combustion research

Abstract Turbulent combustion research is projected to be an important area of research well into the twenty-first century. Issues of current interest in turbulent flame structure and computational prediction are outlined and forecasts are made for approaches that are likely to lead to significant advances. There is a mounting body of evidence that concepts and models derived from the laminar flamelet hypothesis are not valid over many of the conditions of practical interest for both premixed and non-premixed systems. Approaches such as Conditional Moment Closure and Monte–Carlo simulation of the transport equation for the probability density function are considered to have the most promise for pollutant prediction in non-premixed systems. Large Eddy Simulation may be necessary for non-stationary premixed problems and for bluff-body and swirling flows.

[1]  R. Bilger,et al.  Measurement of Scalar Dissipation in Premixed Flames , 1996 .

[2]  Tarek Echekki,et al.  Unsteady strain rate and curvature effects in turbulent premixed methane-air flames , 1996 .

[3]  Yung-cheng Chen,et al.  Stabilization mechanisms of lifted laminar flames in axisymmetric jet flows , 2000 .

[4]  W. Kendal Bushe,et al.  Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows , 1999 .

[5]  J. Ferziger,et al.  Large eddy simulation of turbulent front propagation with dynamic subgrid models , 1997 .

[6]  N. Swaminathan,et al.  Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry , 2001 .

[7]  Robert S. Barlow,et al.  Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames , 1994 .

[8]  Robert W. Bilger Turbulent diffusion flames , 1989 .

[9]  F. Lockwood,et al.  A new radiation solution method for incorporation in general combustion prediction procedures , 1981 .

[10]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[11]  L. Vervisch,et al.  Triple flames and partially premixed combustion in autoignition of non-premixed turbulent mixtures , 1996 .

[12]  Robert W. Bilger,et al.  Second-order conditional moment closure for the autoignition of turbulent flows , 1998 .

[13]  Wen-Huei Jou,et al.  Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor , 1991 .

[14]  R. Moss,et al.  Climate change 1995 - impacts, adaptations and mitigation of climate change : scientific-technical analyses , 1997 .

[15]  Heinz Pitsch,et al.  Numerical Investigation of Soot Formation and Oxidation Under Diesel Engine Conditions , 1995 .

[16]  A. Klimenko,et al.  Multicomponent diffusion of various admixtures in turbulent flow , 1990 .

[17]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[18]  Norbert Peters,et al.  The detailed flame structure of highly stretched turbulent premixed methane-air flames , 1996 .

[19]  Thierry Poinsot,et al.  The evolution equation for the flame surface density in turbulent premixed combustion , 1994, Journal of Fluid Mechanics.

[20]  D. Veynante,et al.  Gradient and counter-gradient scalar transport in turbulent premixed flames , 1997, Journal of Fluid Mechanics.

[21]  Robert W. Bilger,et al.  Simultaneous 2-D Imaging Measurements of Reaction Progress Variable and OH Radical Concentration in Turbulent Premixed Flames: Instantaneous Flame-Front Structure , 2001 .

[22]  Robert W. Schefer,et al.  Mechanism of Flame Stabilization in Turbulent, Lifted-Jet Flames , 1998 .

[23]  T. Poinsot,et al.  Numerical simulations of autoignition in turbulent mixing flows , 1997 .

[24]  Robert W. Bilger,et al.  Modeling soot formation in turbulent methane–air jet diffusion flames , 2000 .

[25]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[26]  Forman A. Williams,et al.  NOx formation in two-stage methane–air flames , 1999 .

[27]  Chung King Law,et al.  An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation , 1998 .

[28]  J. Kent,et al.  Computation of Conditional Average Scalar Dissipation in Turbulent Jet Diffusion Flames , 2000 .

[29]  Thierry Poinsot,et al.  Quenching processes and premixed turbulent combustion diagrams , 1991, Journal of Fluid Mechanics.

[30]  Jing-Tang Yang,et al.  Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner , 1998 .

[31]  F. Williams,et al.  Experimental investigation of a premixed flame in an impinging turbulent stream , 1994 .

[32]  Stephen B. Pope,et al.  A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees , 1998 .

[33]  Robert W. Bilger Turbulent jet diffusion flames , 1976 .

[34]  Robert W. Bilger,et al.  Scalar Dissipation Measurements in Turbulent Jet Diffusion Flames of Air Diluted Methane and Hydrogen , 1997 .

[35]  A. M. Mellor,et al.  Gas turbine engine pollution , 1976 .

[36]  Sébastien Candel,et al.  Combustion instabilities coupled by pressure waves and their active control , 1992 .

[37]  R. Barlow,et al.  The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements , 1996 .

[38]  S. Pope,et al.  Direct numerical simulation of a statistically stationary, turbulent reacting flow , 1999 .

[39]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[40]  Bernhard Peters,et al.  Classification of combustion regimes in a packed bed of particles based on the relevant time and length scales , 1999 .

[41]  K. Bray,et al.  Turbulent flows with premixed reactants , 1980 .

[42]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[43]  Mohy S. Mansour,et al.  Investigation of flame broadening in turbulent premixed flames in the thin-reaction-zones regime , 1998 .

[44]  R. Barlow,et al.  Experiments on the scalar structure of turbulent CO/H2/N2 jet flames , 2000 .

[45]  Sanjay M. Correa,et al.  Power generation and aeropropulsion gas turbines: From combustion science to combustion technology , 1998 .

[46]  J. Bruce,et al.  Climate change, 1995 : economic and social dimensions of climate change , 1997 .

[47]  S. Fedotov LETTER TO THE EDITOR: G-equation, stochastic control theory and relativistic mechanics of a particle moving in a random field , 1997 .

[48]  James J. Riley,et al.  INVESTIGATION OF CLOSURE MODELS FOR NONPREMIXED TURBULENT REACTING FLOWS , 1994 .

[49]  Assaad R. Masri,et al.  An Atlas of QEDR Flame Structures , 1990 .

[50]  Christopher J. Rutland,et al.  Premixed flame effects on turbulence and pressure-related terms , 1995 .

[51]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[52]  C. Bruno,et al.  Recent Advances in the Aerospace Sciences , 1985 .

[53]  Friedrich Dinkelacker,et al.  Measurement of the resolved flame structure of turbulent premixed flames with constant reynolds number and varied stoichiometry , 1998 .

[54]  Robert W. Bilger,et al.  Conditional moment closure for turbulent reacting flow , 1993 .

[55]  Robert W. Bilger,et al.  The structure of turbulent nonpremixed flames , 1989 .

[56]  B. Rogg,et al.  Experimental and numerical studies of a triple flame , 1999 .

[57]  J. D. Li,et al.  The diffusion of conserved and reactive scalars behind line sources in homogeneous turbulence , 1996, Journal of Fluid Mechanics.

[58]  R. Borghi On the Structure and Morphology of Turbulent Premixed Flames , 1985 .

[59]  J. B. Moss,et al.  Simultaneous Measurements of Concentration and Velocity in an Open Premixed Turbulent Flame , 1980 .

[60]  R. Bilger,et al.  Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame , 2001 .

[61]  Roydon Andrew Fraser,et al.  Numerical Prediction of the Autoignition Delay in a Diesel-Like Environment by the Conditional Moment Closure Model , 2000 .

[62]  A. D. Gosman,et al.  Application of a flame-wrinkling les combustion model to a turbulent mixing layer , 1998 .

[63]  Robert W. Bilger,et al.  Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV , 1999 .

[64]  Nedunchezhian Swaminathan,et al.  Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames , 1999 .

[65]  N. Swaminathan,et al.  Study of the conditional covariance and variance equations for second order conditional moment closure , 1999 .

[66]  P. Kalt,et al.  Laser imaging of conditional velocities in premixed propane-air flames by simulataneous OH PLIF and PIV , 1998 .

[67]  R. Barlow,et al.  Relationships among nitric oxide, temperature, and mixture fraction in hydrogen jet flames☆ , 1996 .

[68]  Andrew W. Cook,et al.  A laminar flamelet approach to subgrid-scale chemistry in turbulent flows , 1997 .

[69]  Thierry Mantel,et al.  Some conditional statistics in a turbulent premixed flame derived from direct numerical simulations , 1995 .

[70]  Nedunchezhian Swaminathan,et al.  Interdependence of the Instantaneous Flame Front Structure and the Overall Scalar Flux in Turbulent Premixed Flames , 1997 .

[71]  Lars Sætran,et al.  Reaction in a scalar mixing layer , 1991, Journal of Fluid Mechanics.

[72]  F. Williams,et al.  Turbulent Reacting Flows , 1981 .

[73]  S. Pope,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 1998 .

[74]  A. Masri,et al.  Wide-field conserved scalar imaging in turbulent diffusion flames by a raman and rayleigh method , 1994 .

[75]  Robert W. Bilger,et al.  An experimental study of a reactive plume in grid turbulence , 1996, Journal of Fluid Mechanics.

[76]  K.N.C. Bray,et al.  The challenge of turbulent combustion , 1996 .

[77]  Robert W. Bilger,et al.  The Structure of Diffusion Flames , 1976 .

[78]  R. Barlow,et al.  Effects of turbulence on species mass fractions in methane/air jet flames , 1998 .

[79]  J. Kent,et al.  Second-order conditional moment closure for turbulent jet diffusion flames , 1998 .

[80]  J. Buckmaster,et al.  Edge-Flames and Their Stability , 1996 .

[81]  S. Pope,et al.  Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets , 1990 .

[82]  Patrick Jenny,et al.  PDF simulations of a bluff-body stabilized flow , 2001 .

[83]  Robert W. Bilger,et al.  Scalar gradient and related quantities in turbulent premixed flames , 1997 .

[84]  Friedrich Dinkelacker,et al.  Measurement of the instantaneous detailed flame structure in turbulent premixed combustion , 1996 .

[85]  S. Candel,et al.  Applications of direct numerical simulation to premixed turbulent combustion , 1995 .

[86]  Z. Warhaft Passive Scalars in Turbulent Flows , 2000 .

[87]  Stephen B. Pope,et al.  Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames , 2000 .

[88]  A. Kronenburg,et al.  Modelling Differential Diffusion in Nonpremixed Reacting Turbulent Flow: Application to Turbulent Jet Flames , 2001 .

[89]  N. Peters Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion , 1983 .

[90]  Nebojsa Nakicenovic,et al.  Global energy : perspectives , 1998 .

[91]  Liu Tao,et al.  Application of the elliptic conditional moment closure model to a two-dimensional nonpremixed methanol bluff-body flame , 2000 .

[92]  M. Mungal,et al.  Visual observations of a turbulent diffusion flame , 1989 .