Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs

Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

[1]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[2]  Yilun Shang,et al.  ESTRADA INDEX OF GENERAL WEIGHTED GRAPHS , 2013 .

[3]  Yongtang Shi,et al.  Complete solution to a problem on the maximal energy of unicyclic bipartite graphs , 2010, 1010.6129.

[4]  J. A. Rodríguez-Velázquez,et al.  Atomic branching in molecules , 2006 .

[5]  Yilun Shang Lower bounds for the Estrada index using mixing time and Laplacian spectrum , 2013 .

[6]  Xueliang Li,et al.  Complete solution to a conjecture on the maximal energy of unicyclic graphs , 2010, Eur. J. Comb..

[7]  M. Cavers THE NORMALIZED LAPLACIAN MATRIX AND GENERAL RANDI C INDEX OF GRAPHS , 2010 .

[8]  Ernesto Estrada,et al.  Communicability in temporal networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Yilun Shang,et al.  Random Lifts Of Graphs: Network Robustness Based On The Estrada Index , 2012 .

[10]  Chung-Lie Wang On Development of Inverses of the Cauchy and Hölder Inequalities , 1979 .

[11]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[12]  M. Perc,et al.  Coevolution of Quantum and Classical Strategies on Evolving Random Networks , 2013, PloS one.

[13]  Yongtang Shi,et al.  The Maximal Matching Energy of Tricyclic Graphs , 2014, 1409.2038.

[14]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[15]  Peter Grindrod,et al.  Evolving graphs: dynamical models, inverse problems and propagation , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Shang Yi-Lun Local Natural Connectivity in Complex Networks , 2011 .

[17]  J. A. Peña,et al.  Estimating the Estrada index , 2007 .

[18]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[19]  Mauricio Barahona,et al.  Robustness of random graphs based on graph spectra. , 2012, Chaos.

[20]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Wai Chee Shiu,et al.  The normalized Laplacian Estrada index of a graph , 2014 .

[22]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[23]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[24]  Ivan Gutman,et al.  Selected topics on applications of graph spectra , 2011 .

[25]  Peter Grindrod,et al.  A Matrix Iteration for Dynamic Network Summaries , 2013, SIAM Rev..

[26]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[28]  Xueliang Li,et al.  Connected (n, m)-graphs with minimum and maximum zeroth-order general Randic index , 2007, Discret. Appl. Math..

[29]  Ali Reza Ashrafi,et al.  THE NORMALIZED LAPLACIAN ESTRADA INDEX OF GRAPHS , 2014 .

[30]  Ali Reza Ashrafi,et al.  Note on Estrada and $L$-Estrada indices of graphs , 2009 .

[31]  Shenggui Zhang,et al.  Coulson-type integral formulas for the Estrada index of graphs and the skew Estrada index of oriented graphs , 2015 .

[32]  On Maximum Laplacian Estrada Indices of Trees with Some Given Parameters , .

[33]  Yilun Shang,et al.  Biased edge failure in scale-free networks based on natural connectivity , 2012 .

[34]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[35]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[36]  Yilun Shang,et al.  The Estrada index of evolving graphs , 2015, Appl. Math. Comput..

[37]  Yongtang Shi,et al.  ON MOLECULAR GRAPHS WITH SMALLEST AND GREATEST ZEROTH-ORDER GENERAL RANDIĆ INDEX∗ , 2022 .

[38]  I. Gutman,et al.  More on the Laplacian Estrada index , 2009 .

[39]  Wu Jun,et al.  Natural Connectivity of Complex Networks , 2010 .

[40]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[41]  A. Chang,et al.  On the Laplacian Estrada index of a graph , 2009 .

[42]  Y. Shang More on the normalized Laplacian Estrada index , 2014, 1401.1263.

[43]  Yilun Shang,et al.  Perturbation results for the Estrada index in weighted networks , 2011 .

[44]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[45]  Yaoping Hou,et al.  Some Results on Laplacian Estrada Index of Graphs , 2022 .

[46]  Long Wang,et al.  Evolution of Cooperation on Stochastic Dynamical Networks , 2010, PloS one.

[47]  Yilun Shang Multi-agent Coordination in Directed Moving Neighborhood Random Networks , 2009, ArXiv.

[48]  Yilun Shang,et al.  Distance Estrada index of random graphs , 2015 .

[49]  Peter Grindrod,et al.  Primary evolving networks and the comparative analysis of robust and fragile structures , 2014, J. Complex Networks.

[50]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Shaun M. Fallat,et al.  On the normalized Laplacian energy and general Randić index R-1 of graphs , 2010 .

[52]  On Resolvent Estrada Index , 2015 .

[53]  Peter Grindrod,et al.  A dynamical systems view of network centrality , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.