Multi-Dimensional Data

[1]  P. Andrekson,et al.  Petabit-per-second data transmission using a chip-scale microcomb ring resonator source , 2022, Nature Photonics.

[2]  J. Vučković,et al.  Inverse Design of Optical Vortex Beam Emitters , 2022, ACS Photonics.

[3]  N. Fontaine,et al.  Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber , 2021, Nature Communications.

[4]  Paolo Costa,et al.  Ultrafast optical circuit switching for data centers using integrated soliton microcombs , 2020, Nature Communications.

[5]  Mohamad Hossein Idjadi,et al.  Nanophotonic phase noise filter in silicon , 2020 .

[6]  A. Boes,et al.  Optical data transmission at 44Tb/s and 10 bits/s/Hz over the C-band with standard fibre and a single micro-comb source , 2020, 2003.11893.

[7]  K. Srinivasan,et al.  Spontaneous pulse formation in edgeless photonic crystal resonators , 2020, Nature Photonics.

[8]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[9]  Dries Vercruysse,et al.  Nanophotonic inverse design with SPINS: Software architecture and practical considerations , 2019, Applied Physics Reviews.

[10]  Akhilesh S. P. Khope,et al.  Inverse-Designed Photonics for Semiconductor Foundries , 2019, ACS Photonics.

[11]  Shanhui Fan,et al.  Inverse-designed photonic circuits for fully passive, bias-free Kerr-based nonreciprocal transmission and routing , 2019, 1905.04818.

[12]  Joseph M. Kahn,et al.  Broadband electro-optic frequency comb generation in a lithium niobate microring resonator , 2018, Nature.

[13]  Toshio Morioka,et al.  Single-source chip-based frequency comb enabling extreme parallel data transmission , 2018, Nature Photonics.

[14]  W. Freude,et al.  In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration , 2018, 1802.00051.

[15]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[16]  Hon Ki Tsang,et al.  10‐Channel Mode (de)multiplexer with Dual Polarizations , 2018 .

[17]  D. Miller,et al.  Unscrambling light—automatically undoing strong mixing between modes , 2015, Light: Science & Applications.

[18]  David A. B. Miller,et al.  Communications expands its space , 2017, Nature Photonics.

[19]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[20]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[21]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[22]  F. Huijskens,et al.  Ultra-high-density spatial division multiplexing with a few-mode multicore fibre , 2014, Nature Photonics.

[23]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[24]  Morteza Ziyadi,et al.  Tunable optical correlator using an optical frequency comb and a nonlinear multiplexer. , 2014, Optics express.

[25]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[26]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[27]  A. Gnauck,et al.  32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[28]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[29]  G. Lo,et al.  A compact and low loss Y-junction for submicron silicon waveguide. , 2013, Optics express.

[30]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[31]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[32]  Steven G. Johnson,et al.  On-chip transformation optics for multimode waveguide bends , 2012, Nature Communications.