Global Bounded Synchronization of General Dynamical Networks With Nonidentical Nodes

This note addresses the problem of synchronization for general dynamical networks with nonidentical nodes. The coupling strength, outer coupling configuration and inner connection in such networks are all time varying. Neither an equilibrium for each node nor a synchronization manifold is assumed to exist. An estimate of the convergence domain for a general class of time-varying nonlinear systems is given. By introducing the average dynamics of all nodes and based on this estimate, a criterion of global synchronization in the sense of boundedness of the maximum state deviation between nodes is developed. An explicit bound of the maximum state deviation between nodes is obtained by the maximum difference between each node dynamics and the average dynamics. The proposed criterion is an extension of several related synchronization criteria for the case of identical nodes to the case of nonidentical nodes.

[1]  M.W. Spong,et al.  Master-slave synchronization with switching communication through passive model-based control design , 2006, 2006 American Control Conference.

[2]  Guanrong Chen,et al.  New criteria for synchronization stability of general complex dynamical networks with coupling delays , 2006 .

[3]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[4]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[5]  Chao Liu,et al.  L2 norm performance index of synchronization and LQR control synthesis of complex networks , 2009, Autom..

[6]  Brian D. O. Anderson,et al.  Control of Minimally Persistent Formations in the Plane , 2009, SIAM J. Control. Optim..

[7]  Jie Sun,et al.  Constructing Generalized Synchronization Manifolds by Manifold Equation , 2008, SIAM J. Appl. Dyn. Syst..

[8]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[9]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[10]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[11]  Chai Wah Wu,et al.  Synchronization in Complex Networks of Nonlinear Dynamical Systems , 2008 .

[12]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 2: The Asynchronous Case , 2007, SIAM J. Control. Optim..

[13]  D. Ho,et al.  Local and global synchronization in general complex dynamical networks with delay coupling , 2008 .

[14]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[15]  J. A. Laoye,et al.  Synchronization, anti-synchronization and current transports in non-identical chaotic ratchets , 2007 .

[16]  Francesco Amato,et al.  Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design , 2010, IEEE Transactions on Automatic Control.

[17]  Jun Zhao,et al.  Global synchronization of complex dynamical networks with non-identical nodes , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 1: The Synchronous Case , 2007, SIAM J. Control. Optim..

[19]  A. Jadbabaie,et al.  Synchronization in Oscillator Networks: Switching Topologies and Non-homogeneous Delays , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Ranjit Kumar Upadhyay,et al.  Complex dynamics and synchronization in two non-identical chaotic ecological systems , 2009 .

[21]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[22]  J. B. Chabi Orou,et al.  Synchronization dynamics in a ring of four mutually coupled biological systems , 2008 .

[23]  Jun Zhao,et al.  Synchronization of Complex Dynamical Networks with Switching Topology: a Switched System Point of View , 2008 .

[24]  M. Brede Synchrony-optimized networks of non-identical Kuramoto oscillators , 2008, 0809.4531.

[25]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[26]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[27]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[28]  Brian D. O. Anderson,et al.  Network synchronizability enhancement using convex optimization , 2009, 2009 European Control Conference (ECC).

[29]  L. Kocarev,et al.  Towards generalized synchronization of strictly different chaotic systems [rapid communication] , 2005 .

[30]  Alexander L. Fradkov,et al.  Control of the coupled double pendulums system , 2005 .

[31]  Ricardo Femat,et al.  On the Controlled Synchronization of DynamicalNetworks with Non Identical Nodes , 2007 .

[32]  S. Strogatz Exploring complex networks , 2001, Nature.

[33]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.