Metal oxide composites in conductometric gas sensors: Achievements and challenges

Abstract The features of conductometric gas sensors based on metal oxide composites are considered. The methods of the composites forming and the advantages of their using in the development of gas sensors are discussed. It is given the analysis of the factors that reduce the effectiveness of the composite using in conductometric gas sensors and can restrict application of nanocomposites in these devices. Technology features of composite synthesis and device fabrication, which should be taken into account while designing and fabricating sensors based on metal oxide composites, are considered. The mechanisms explaining the operation of conductometric gas sensors based on metal oxide composites are also discussed.

[1]  Dongfang Yang,et al.  Nanocomposite Films for Gas Sensing , 2011 .

[2]  Xiaoqiang An,et al.  ZnO@ZnS hollow dumbbells–graphene composites as high-performance photocatalysts and alcohol sensors , 2012 .

[3]  Ada Fort,et al.  Surface State Models For Conductance Response Of Metal Oxide Gas Sensors During Thermal Transients , 2012 .

[4]  Norio Miura,et al.  Sensing behavior of CuO-loaded snO2 element for H2S detection , 1991 .

[5]  V. Lantto,et al.  A study of gas-sensing properties of sputtered α-SnWO4 thin films , 1995 .

[6]  Soon-Don Choi,et al.  Role of CaO as crystallite growth inhibitor in SnO2 , 2004 .

[7]  C. Ding,et al.  Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method , 2003 .

[8]  L. A. Patil,et al.  Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors , 2008 .

[9]  T. Ishihara,et al.  Mixed Oxide Capacitor of CuO–BaSnO3 as a Sensor for CO2 Detection over a Wide Range of Concentration , 1991 .

[10]  K. Zakrzewska,et al.  Nanocrystalline TiO2/SnO2 composites for gas sensors , 2012, Journal of Thermal Analysis and Calorimetry.

[11]  Joon-Hyung Lee,et al.  Precipitate concentration of Co2SnO4 in CoO-doped SnO2 ceramics at different oxygen chemical potentials , 2001 .

[12]  Norio Miura,et al.  Study of WO3-based sensing materials for NH3 and NO detection , 2000 .

[13]  M. Kaneko,et al.  Solid Solubility of SnO2 in In2O3 , 2000 .

[14]  Xue-ming Ma,et al.  Structural, optical and magnetic properties of Fe-doped ZnO , 2009 .

[15]  W. Jin,et al.  Synthesis and characterization of V2O5-doped SnO2 nanocrystallites for oxygen-sensing properties , 2003 .

[16]  S. Pratsinis,et al.  Dopants in Vapor‐Phase Synthesis of Titania Powders , 1992 .

[17]  Kengo Shimanoe,et al.  Sensing properties of SnO2–Co3O4 composites to CO and H2 , 2004 .

[18]  X. Zu,et al.  Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method , 2008 .

[19]  Chao-Nan Xu,et al.  Stabilization of SnO2 ultrafine particles by additives , 1992 .

[20]  S. Musić,et al.  X-ray diffraction and Mössbauer spectra of the system Fe2O3-SnO2 , 1989 .

[21]  M. Rumyantseva,et al.  Chemical modification of nanocrystalline metal oxides: effect of the real structure and surface chemistry on the sensor properties , 2008 .

[22]  C. Liu,et al.  Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2 , 2008 .

[23]  S. S. Kim,et al.  Electrospun nanofibers of CuOSnO2 nanocomposite as semiconductor gas sensors for H2S detection , 2013 .

[24]  Elisabetta Comini,et al.  Selectivity Modification of SnO2-Based Materials for Gas Sensor Arrays , 2010 .

[25]  Hyung Kook Kim,et al.  Solid solubility limits of Ga and Al in ZnO , 2002 .

[26]  Dieter Kohl,et al.  Function and applications of gas sensors , 2001 .

[27]  Hideomi Koinuma,et al.  High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties , 2001 .

[28]  Chunyu Li,et al.  Sensors and actuators based on carbon nanotubes and their composites: A review , 2008 .

[29]  A. Cornet,et al.  A new CO2 gas sensing material , 2003 .

[30]  U. Lampe,et al.  Comparison of transient response of exhaust-gas sensors based on thin films of selected metal oxides , 1992 .

[31]  T. Buslaps,et al.  Determination of the Solubility of Tin in Indium Oxide Using In Situ and Ex Situ X‐Ray Diffraction , 2012 .

[32]  B. Dole,et al.  Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles , 2013 .

[33]  T. J. Tate,et al.  An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors , 1996 .

[34]  G. Sberveglieri,et al.  Gas sensors : principles, operation and developments , 1992 .

[35]  U. Lampe,et al.  Metal Oxide Sensors , 1995, International Conference on Solid-State Sensors, Actuators and Microsystems.

[36]  Vijay K. Tomer,et al.  Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors , 2016 .

[37]  W. M. Davis,et al.  Structure of Indium Iron Oxide , 1994 .

[38]  Anjali A. Athawale,et al.  Nanocomposite of Pd-polyaniline as a selective methanol sensor , 2006 .

[39]  A. Tricoli Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors , 2012, Biosensors.

[40]  Jun Zhang,et al.  Enhanced sensor response of Ni-doped SnO2 hollow spheres , 2011 .

[41]  Soo Chool Lee,et al.  The development of SnO2-based recoverable gas sensors for the detection of DMMP , 2009 .

[42]  E. V. Kolesnikova,et al.  Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)-doped tin dioxide films deposited by spray pyrolysis , 2010 .

[43]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[44]  L. A. Patil,et al.  Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature , 2007 .

[45]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[46]  Jordi Arbiol,et al.  SnO2/MoO3-nanostructure and alcohol detection , 2006 .

[47]  Y. Mortazavi,et al.  Strong effects of gallia on structure and selective responses of Ga2O3–In2O3 nanocomposite sensors to either ethanol, CO or CH4 , 2015 .

[48]  P. K. Basu,et al.  Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals , 2009, J. Sensors.

[49]  Sun-Woo Choi,et al.  Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties , 2009, Nanotechnology.

[50]  Jian Jia,et al.  Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties , 2012 .

[51]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[52]  L. A. Patil,et al.  Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature , 2006 .

[53]  S. G. Chatterjee,et al.  Graphene–metal oxide nanohybrids for toxic gas sensor: A review , 2015 .

[54]  Xingjiu Huang,et al.  Graphene-based hybrids for chemiresistive gas sensors , 2015 .

[55]  P. Morais,et al.  Evidences of the evolution from solid solution to surface segregation in Ni‐doped SnO2 nanoparticles using Raman spectroscopy , 2011 .

[56]  J. Chai,et al.  Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions , 2003 .

[57]  Derek R. Miller,et al.  Nanoscale metal oxide-based heterojunctions for gas sensing: A review , 2014 .

[58]  Giorgio Sberveglieri,et al.  Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors , 1990 .

[59]  A. M. Gas'kov,et al.  Nature of Gas Sensitivity in Nanocrystalline Metal Oxides , 2001 .

[60]  Xiaoping Shen,et al.  Co3O4/ZnO nanocomposites for gas-sensing applications , 2013 .

[61]  N. Attaf,et al.  Effect of Sn Doping on the Properties of ZnO Thin Films Prepared by Spray Pyrolysis , 2012 .

[62]  G. Samsonov,et al.  The Oxide Handbook , 1973 .

[63]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[64]  J. Badenes,et al.  Study of Cr-SnO2 ceramic pigment and of Ti/Sn ratio on formation and coloration of these materials , 2007 .

[65]  P. Vasambekar,et al.  Ferrite Gas Sensors , 2011, IEEE Sensors Journal.

[66]  Changhyun Jin,et al.  H2S gas sensing properties of bare and Pd-functionalized CuO nanorods , 2012 .

[67]  Joan Ramon Morante,et al.  Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances , 2001 .

[68]  Ghenadii Korotcenkov,et al.  Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis , 2003 .

[69]  Giorgio Sberveglieri,et al.  Solid state gas sensing , 2009 .

[70]  Sulabha K. Kulkarni,et al.  EPR and DRS evidence for NO2 sensing in Al-doped ZnO , 2008 .

[71]  Norio Miura,et al.  CuO-SnO2 element for highly sensitive and selective detection of H2S , 1992 .

[72]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[73]  Chii-Wann Lin,et al.  Fabrication of NOx gas sensors using In2O3-ZnO composite films , 2010 .

[74]  J. Nowotny Surface segregation of defects in oxide ceramic materials , 1988 .

[75]  Duk-Dong Lee,et al.  CH4 sensing characteristics of K-, Ca-, Mg impregnated SnO2 sensors , 2001 .

[76]  Luca Francioso,et al.  SOLID STATE GAS SENSORS: STATE OF THE ART AND FUTURE ACTIVITIES , 2003 .

[77]  R. Binions,et al.  BaSnO3 Thick Film as a Carbon Dioxide Sensor , 2011, ECS Transactions.

[78]  Quanbao Zhao,et al.  Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites , 2003 .

[79]  T. Grande,et al.  Solid solubility of rare earth elements (Nd, Eu, Tb) in In2-xSnxO3 - effect on electrical conductivity and optical properties. , 2014, Dalton transactions.

[80]  H. Enoki,et al.  The intermediate compound in the In2O3-SnO2 system , 1991 .

[81]  Noritaka Mizuno,et al.  CO2-sensing characteristics of SnO2 element modified by La2O3 , 1993 .

[82]  S. Pratsinis,et al.  Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions , 2009, Nanotechnology.

[83]  Koji Moriya,et al.  Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide , 2000 .

[84]  U. Lampe,et al.  Nitrogen oxide sensors based on thin films of BaSnO3 , 1995 .

[85]  Xuejun Zheng,et al.  Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference , 2008 .

[86]  C. G. Dighavkar,et al.  Semiconductor metal oxide compounds based gas sensors: A literature review , 2015, Frontiers of Materials Science.

[87]  N. Yamazoe,et al.  Spin-coated thin films of SiO2–WO3 composites for detection of sub-ppm NO2 , 1997 .

[88]  S. Pratsinis,et al.  Thermally Stable, Silica-Doped ε-WO3 for Sensing of Acetone in the Human Breath , 2010 .

[89]  L. Oleksenko,et al.  Effect of SnO2 particle size on the hydrogen sensitivity of adsorption–semiconductor sensors with CoxOy/SnO2 active coating , 2010 .

[90]  M. Haradome,et al.  Co gas detection by ThO2-Doped SnO2 , 1979 .

[91]  Dongwon Yoo,et al.  Sensing behaviour of semconducting metal oxides for the detection of organophosphorus compounds , 1993 .

[92]  Elson Longo,et al.  Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution , 2002 .

[93]  Camelia Matei Ghimbeu,et al.  Electrostatic sprayed SnO2 and Cu-doped SnO2 films for H2S detection , 2008 .

[94]  Meng Guangyao,et al.  Study on SnO2-Fe2O3 gas-sensing system by a.c. impedance technique , 1993 .

[95]  Norio Miura,et al.  Correlation between Gas Sensitivity and Crystallite Size in Porous SnO2-Based Sensors , 1990 .

[96]  A. A. Tomchenko,et al.  Structure and gas-sensitive properties of WO3–Bi2O3 mixed thick films , 2000 .

[97]  J. H. He,et al.  Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method , 2008 .

[98]  Ghenadii Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology , 2008 .

[99]  E. Longo,et al.  Microstructural evolution during sintering of CoO doped SnO2 ceramics , 1999 .

[100]  E. Castaño,et al.  Semiconducting BaTiO3-CuO mixed oxide thin films for CO2 detection , 2009 .

[101]  Conductivity change of SnO2 with CO2 adsorption , 1990 .

[102]  M. Carotta,et al.  Preparation and characterization of nanosized titania sensing film , 2001 .

[103]  Dianqing Li,et al.  Methane gas-sensing and catalytic oxidation activity of SnO2–In2O3 nanocomposites incorporating TiO2 , 2008 .

[104]  Min-Suk Lee,et al.  A new process for fabricating CO2-sensing layers based on BaTiO3 and additives , 2000 .

[105]  Yong Qing Fu,et al.  Recent advances of superhard nanocomposite coatings: a review , 2003 .

[106]  P. Ajayan,et al.  Nanocomposite Science And Technology , 2003 .

[107]  S. V. Baran,et al.  Sorption and gas sensitive properties of In2O3 based ceramics doped with Ga2O3 , 1998 .

[108]  Ghenadii Korotcenkov,et al.  Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor , 2009 .

[109]  Zhenghong Lu,et al.  Impact of lattice distortion and electron doping on α-MoO3 electronic structure , 2014, Scientific Reports.

[110]  Elvira Fortunato,et al.  High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications , 2009 .

[111]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[112]  C. Yeh,et al.  Promotive effect of CNT on Co3O4–SnO2 in a semiconductor-type CO sensor working at room temperature , 2008 .

[113]  Kengo Shimanoe,et al.  Receptor function of small semiconductor crystals with clean and electron-traps dispersed surfaces , 2009 .

[114]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[115]  G. Korotcenkov,et al.  In2O3:Ga and In2O3:P-based one-electrode gas sensors: Comparative study , 2015 .

[116]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[117]  Zhang Jiancheng,et al.  Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors , 1999 .

[118]  J. Moya,et al.  The challenge of ceramic/metal microcomposites and nanocomposites , 2007 .

[119]  S. Oswald,et al.  XPS investigations of surface segregation of doping elements in SnO2 , 2001 .

[120]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[121]  Xiaohua Zhou,et al.  Study on sensing mechanism of CuO–SnO2 gas sensors , 2003 .

[122]  K. Patil,et al.  High H2S-sensitive copper-doped tin oxide thin film , 2003 .

[123]  Ghenadii Korotcenkov,et al.  The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization , 2012 .

[124]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[125]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[126]  Norio Miura,et al.  Metal oxide semiconductor N2O sensor for medical use , 2001 .

[127]  M. Rumyantseva,et al.  Nanocrystalline ZnO(Ga): Paramagnetic centers, surface acidity and gas sensor properties , 2013 .

[128]  Y. Mortazavi,et al.  In2O3-ZnO nanocomposites: High sensor response and selectivity to ethanol , 2015 .

[129]  E. Bukowska,et al.  Studies of BaO–In2O3–CuO ternary system: Part I: Phase equilibria in the isothermal cross-section of 930°C , 2000 .

[130]  A. M. Gas'kov,et al.  Dopants in nanocrystalline tin dioxide , 2003 .

[131]  Xinyu Xue,et al.  Synthesis and H2S Sensing Properties of CuO-SnO2Core/Shell PN-Junction Nanorods , 2008 .

[132]  J. Nowotny,et al.  Surface and Near-Surface Chemistry of Oxide Materials , 1988 .

[133]  Ulrich Simon,et al.  Preparation and Gas Sensing Characteristics of Nanoparticulate p‐Type Semiconducting LnFeO3 and LnCrO3 Materials , 2007 .

[134]  Quanfang Chen,et al.  Micromachined nanocrystalline silver doped SnO2 H2S sensor , 2006 .

[135]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[136]  Kwang Ho Kim,et al.  CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide , 2000 .

[137]  Shurong Wang,et al.  CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. , 2012, Materials science & engineering. C, Materials for biological applications.

[138]  O. Tan,et al.  Semiconductor gas sensors , 2013 .

[139]  Weigang Lin,et al.  Gas-sensitive properties and structure of nanostructured ( - materials prepared by mechanical alloying , 1997 .

[140]  M. Venkatesan,et al.  SnO2 doped with Mn, Fe or Co: Room temperature dilute magnetic semiconductors , 2004 .

[141]  M. Haradome,et al.  Temperature dependence of Rresistivities of SnO2-based gas sensors exposed to Co, H2, and C3H8 gases , 1980 .

[142]  Shouli Bai,et al.  Preparation, characterization and gas-sensing properties of SnO2-In2O3 nanocomposite oxides , 2006 .

[143]  G. Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure , 2009 .

[144]  W. Pan,et al.  Co-Doped Tin Oxide Thin Films by Spin Coating , 2008 .

[145]  J. Jehng,et al.  Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts. , 2005, The journal of physical chemistry. B.

[146]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[147]  M. Engelhard,et al.  Development of high-temperature ferromagnetism in Sn O 2 and paramagnetism in SnO by Fe doping , 2005 .

[148]  V. N. Solomakha,et al.  The influence of preparation conditions and doping on the physicochemical and sensor properties of mesoporous tin oxide , 2013 .

[149]  S. Manorama,et al.  Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition , 1994 .

[150]  A. Cornet,et al.  Gas-sensing characteristics of one-electrode gas sensors based on doped In2O3 ceramics , 2004 .

[151]  Katarzyna Zakrzewska,et al.  Sensitization of Gas Sensing Properties in TiO2/SnO2 Nanocomposites , 2012 .

[152]  N. Yamazoe,et al.  Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. , 2014, ACS applied materials & interfaces.

[153]  A. Azam,et al.  Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy , 2010 .

[154]  Sanjay Mathur,et al.  Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection , 2013 .

[155]  M. M. Wu,et al.  Humidity sensitivity of Sr(Sn, Ti)O3 ceramics , 1990 .

[156]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[157]  Ghenadii Korotcenkov,et al.  Practical aspects in design of one-electrode semiconductor gas sensors: Status report , 2007 .

[158]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[159]  V. F. Gromov,et al.  Gas Semiconducting Sensors Based on Metal Oxide Nanocomposites , 2012 .

[160]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[161]  Emmanuel Flahaut,et al.  CARBON NANOTUBE-METAL-OXIDE NANOCOMPOSITES: MICROSTRUCTURE, ELECTRICAL CONDUCTIVITY AND MECHANICAL PROPERTIES , 2000 .

[162]  G. Korotcenkov,et al.  Luminescence properties of doped SnO2 powders and films designed for gas sensor application , 2011, MSE 2011.

[163]  J. Morante,et al.  Gas-Sensing Properties of Sprayed Films of (CdO) (ZnO) Mixed Oxide , 2005 .

[164]  Irina I. Ivanova,et al.  Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties , 2006 .

[165]  Jun Yu,et al.  Study on a micro-gas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection , 2008 .

[166]  Jianlin Shi,et al.  Nanocomposites from ordered mesoporous materials , 2004 .

[167]  G. Frank,et al.  The solubilities of Sn in In2O3 and of In in SnO2 crystals grown from Sn—In melts , 1976 .

[168]  G. Korotcenkov,et al.  The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis , 2013 .

[169]  S. Oswald,et al.  Specific properties of fine SnO2 powders connected with surface segregation , 2004, Analytical and bioanalytical chemistry.

[170]  J. Hanson,et al.  Reduction of CuO in H2: In Situ Time-Resolved XRD Studies , 2003 .

[171]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .

[172]  S. Han,et al.  Preparation and characterization of indium-doped tin dioxide nanocrystalline powders , 1998 .

[173]  I. Sayago,et al.  NOx tin dioxide sensors activities, as a function of doped materials and temperature , 1993 .

[174]  K. Zakrzewska,et al.  TiO2-SnO2 Composites and Solid Solutions for Chemical Nanosensors , 2012 .

[175]  M. Ivanovskaya,et al.  Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol☆ , 2003 .

[176]  J. Gardner A diffusion-reaction model of electrical conduction in tin oxide gas sensors , 1989 .

[177]  P. N. Lisboa-Filho,et al.  The influence of cation segregation on the methanol decomposition on nanostructured SnO2 , 2002 .

[178]  Arvind Agarwal,et al.  Challenges and advances in nanocomposite processing techniques , 2006 .

[179]  V. Lantto,et al.  The effect of microstructure on the height of potential energy barriers in porous tin dioxide gas sensors , 1988 .

[180]  S. Lofland,et al.  Bulk synthesis and high-temperature ferromagnetism of (In1−xFex)2O3−σ with Cu co-doping , 2005 .

[181]  Dianqing Li,et al.  Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2 , 2010 .

[182]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[183]  Hye Yong Chu,et al.  SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor , 2010 .

[184]  Kestur Gundappa Satyanarayana,et al.  Nanocomposites: synthesis, structure, properties and new application opportunities , 2009 .

[185]  Wei Li,et al.  Improved H2 sensing properties of Co-doped SnO2 nanofibers , 2010 .

[186]  Chemical modification of nanocrystalline tin dioxide for selective gas sensors , 2013 .

[187]  G. Rohrer,et al.  Grain boundary segregation in oxide ceramics , 2003 .

[188]  Mira Josowicz,et al.  Composites of intrinsically conducting polymers as sensing nanomaterials. , 2008, Chemical reviews.

[189]  F. Lévy,et al.  Gas sensitive and selective SnO2 thin polycrystalline films doped by ion implantation , 1993 .

[190]  Tatsumi Ishihara,et al.  Application of Mixed Oxide Capacitor to the Selective Carbon Dioxide Sensor I . Measurement of Carbon Dioxide Sensing Characteristics , 1991 .

[191]  R. G. Pavelko,et al.  Hydrogen sensors on the basis of SnO2-TiO2 systems , 2011 .

[192]  I. Sandu,et al.  Nanostructured cobalt manganese ferrite thin films for gas sensor application , 2006 .

[193]  Nicolae Barsan,et al.  Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO2 Sensing , 2009 .

[194]  P. N. Lisboa-Filho,et al.  Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles , 2003 .

[195]  S. A. Patil,et al.  Modified zinc oxide thick film resistors as NH3 gas sensor , 2006 .

[196]  X. Zu,et al.  Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol-gel-calcination or sol-gel-hydrothermal route , 2008 .

[197]  U. Diebold,et al.  Surface studies of gas sensing metal oxides. , 2007, Physical chemistry chemical physics : PCCP.

[198]  Wojtek Wlodarski,et al.  A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite , 2006 .

[199]  Sofian M. Kanan,et al.  Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection , 2009, Sensors.

[200]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[201]  Tatsumi Ishihara,et al.  Application of a Mixed Oxide Capacitor to the Selective Carbon Dioxide Sensor II . Sensing Characteristics of a Oxide Capacitor , 1991 .

[202]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[203]  J. Zhang,et al.  Optical properties and applications of hybrid semiconductor nanomaterials , 2009 .

[204]  Makoto Egashira,et al.  Improvement of SO2 sensing properties of WO3 by noble metal loading , 2001 .

[205]  Koji Moriya,et al.  Indium oxide-based gas sensor for selective detection of CO , 1996 .

[206]  N. Rezlescu,et al.  Gas sensitivity of nanocrystalline nickel ferrite , 2006 .

[207]  Matteo Ferroni,et al.  Nanosized thin films of tungsten-titanium mixed oxides as gas sensors , 1999 .

[208]  Ghenadii Korotcenkov,et al.  SYNTHESIS OF METAL OXIDE-BASED NANOCOMPOSITES AND MULTICOMPONENT COMPOUNDS USING LAYER-BY-LAYER METHOD AND PROSPECTS FOR THEIR APPLICATION , 2015 .

[209]  V. F. Gromov,et al.  Effect of composition on sensing properties of SnO2 + In2O3 mixed nanostructured films , 2012 .

[210]  U. König Deposition and properties of multicomponent hard coatings , 1987 .

[211]  Lionel Presmanes,et al.  CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film , 2010 .

[212]  Bernard Raveau,et al.  In2O3:Ge, a promising n-type thermoelectric oxide composite , 2008 .

[213]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[214]  Norio Miura,et al.  Some Basic Aspects of Semiconductor Gas Sensors , 1992 .

[215]  G. Korotcenkov,et al.  Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study , 2014 .

[216]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[217]  K. Zakrzewska,et al.  TiO2–SnO2 nanomaterials for gas sensing and photocatalysis , 2013 .

[218]  B. Mehta,et al.  Structural, electrical and gas-sensing properties of In2O3 : Ag composite nanoparticle layers , 2005 .

[219]  Giorgio Sberveglieri,et al.  On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors , 2001 .

[220]  Norio Miura,et al.  Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method , 1998 .

[221]  Norio Miura,et al.  Electronic Interaction between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensors , 1988 .

[222]  P. S. Reddy,et al.  Electrical and optical properties of In2O3:Mo thin films prepared at various Mo-doping levels , 2010 .

[223]  Fengmin Liu,et al.  UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles , 2012 .

[224]  R. Tenne,et al.  Polymer-assisted fabrication of nanoparticles and nanocomposites , 2008 .

[225]  A. Afzal,et al.  NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives , 2012 .

[226]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[227]  Matteo Ferroni,et al.  Nanostructured mixed oxides compounds for gas sensing applications , 2002 .

[228]  Manoj K. Ram,et al.  CO gas sensing from ultrathin nano-composite conducting polymer film , 2005 .

[229]  M. Rumyantseva,et al.  Doping effects on electrical and optical properties of spin-coated ZnO thin films , 2015 .

[230]  T. V. Belysheva,et al.  Mechanism of the conductivity and sensor response of nanostructured In2O3+ZnO films , 2013, Russian Journal of Physical Chemistry A.

[231]  Amitabh Das,et al.  Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles , 2006 .

[232]  R. G. Pavelko,et al.  Selectivity problem of SnO2 based materials in the presence of water vapors , 2012 .

[233]  Giovanni Neri,et al.  Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method , 2008 .

[234]  Joon-Hyung Lee,et al.  Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior , 2004 .

[235]  U. Lampe,et al.  Carbon-monoxide sensors based on thin films of BaSnO3 , 1995 .

[236]  S. Bhansali,et al.  Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. , 2015, Chemical reviews.

[237]  Alexander M. Gaskov,et al.  Reactivity of SnO2–CuO nanocrystalline materials with H2S: a coupled electrical and Raman spectroscopic study , 2000 .

[238]  I. Sayago,et al.  The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO , 1995 .

[239]  I. B. Kutsenok,et al.  Copper and nickel doping effect on interaction of SnO2 films with H2S , 1997 .

[240]  P. T. Moseley,et al.  Techniques and Mechanisms in Gas Sensing , 1991 .

[241]  E. Longo,et al.  A study of the SnO2·Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance , 2001 .

[242]  C. Koch,et al.  Synthesis of nanostructured materials by mechanical milling: problems and opportunities , 1997 .

[243]  Gerd Sulz,et al.  Ni, In and Sb implanted Pt and V catalysed thin-film SnO2 gas sensors , 1993 .

[244]  Sudhanshu Srivastava,et al.  Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires. , 2008, Accounts of chemical research.

[245]  A. Cornet,et al.  Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor , 2003 .

[246]  Wang Li,et al.  H2S sensing properties of the SnO2-based thin films , 2000 .

[247]  N. Yamazoe,et al.  Cu-doped α-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties , 2014 .

[248]  Udo Weimar,et al.  Gas Sensors Based on Semiconducting Metal Oxides , 2005 .

[249]  E. Longo,et al.  Effect of Niobia on the Sintering of SnO2 , 1989 .

[250]  G. Korotcenkov,et al.  SnO2:Cu films doped during spray pyrolysis deposition: The reasons of the gas sensing properties change , 2013 .

[251]  S. Kashyap,et al.  On the Role of Impurities on Ferromagnetism in Nanocrystalline SnO2:Ni Thick Films , 2008 .