Fast detection and isolation of direct current (DC) faults are key issues for DC grids. Therefore, it is very necessary to study the fault protection principle for DC grids. This paper firstly presents the main difficulties in DC fault protection. Then, a local protection and local action strategy for isolating the DC faults is proposed. To illustrate the performance of the proposed protection strategy, a four-terminal DC grid with the hybrid high voltage direct current (HVDC) circuit breakers (HVDC CBs) is constructed in the time-domain simulation software PSCAD/EMTDC as the test system. The systematical comparison between the ordinary protection strategy and the proposed strategy is carried out. The protection selectivity of the proposed local detection and local action strategy is thoroughly studied through complete DC line fault scanning of the test system. The simulation results show that the proposed strategy is of high protection selectivity and speed. In addition, the current rating and the voltage of HVDC CB could be greatly reduced with the proposed strategy, which proves the economic benefits of the proposed strategy.