Layer-dependent electronic and magnetic properties of two-dimensional graphitic molybdenum carbide

[1]  Na Guo,et al.  Two-dimensional graphitic metal carbides: structure, stability and electronic properties , 2023, Nanotechnology.

[2]  Shunqing Wu,et al.  High-Density Fe Single Atoms Anchored on 2d-Fe2c12 Monolayer Materials for N2 Reduction to Nh3 with High Activity and Selectivity , 2022, SSRN Electronic Journal.

[3]  Lei Shen,et al.  Prominent nonequilibrium effects beyond the standard first-principles approach in nanoscale electronic devices. , 2021, Nanoscale horizons.

[4]  Jijun Zhao,et al.  Recent progress on 2D magnets: Fundamental mechanism, structural design and modification , 2021 .

[5]  K. Ang,et al.  Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing , 2021, npj 2D Materials and Applications.

[6]  Chun-Wei Huang,et al.  Atomic-Scale Localized Thinning and Reconstruction of Two-Dimensional WS2 Layers through In Situ Transmission Electron Microscopy/Scanning Transmission Electron Microscopy , 2020 .

[7]  Yunhao Lu,et al.  Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides. , 2019, Nanoscale.

[8]  Jinlan Wang,et al.  High Curie temperature and intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S, Se, Te) nanosheets , 2019, Nanoscale Horizons.

[9]  Yujia Zeng,et al.  Intrinsic Van Der Waals Magnetic Materials from Bulk to the 2D Limit: New Frontiers of Spintronics , 2019, Advanced materials.

[10]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[11]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[12]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[13]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[14]  Na Guo,et al.  Spin-dependent electron transport through a Mn-phthalocyanine molecule — A steady-state density functional theory (SS-DFT) study , 2016 .

[15]  Sergei V. Kalinin,et al.  Directing Matter: Toward Atomic-Scale 3D Nanofabrication. , 2016, ACS nano.

[16]  Argo Nurbawono,et al.  Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions , 2015, Scientific Reports.

[17]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[18]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[19]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[20]  K. Edinger,et al.  Industrial perspective on focused electron beam-induced processes , 2014 .

[21]  Chun Zhang Uniform Electron Gas under An External Bias: The Generalized Thomas-Fermi-Dirac Model and the Dual-Mean-Field Theory , 2013, 1311.5680.

[22]  Chun Zhang,et al.  Communication: electronic and transport properties of molecular junctions under a finite bias: a dual mean field approach. , 2013, The Journal of chemical physics.

[23]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[24]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[25]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[29]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[30]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[31]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .