On the Functor ℓ2

We study the functor l2 from the category of partial injections to the category of Hilbert spaces. The former category is finitely accessible, and in both categories homsets are algebraic domains. The functor preserves daggers, monoidal structures, enrichment, and various (co)limits, but has no adjoints. Up to unitaries, its direct image consists precisely of the partial isometries, but its essential image consists of all continuous linear maps between Hilbert spaces.

[1]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[2]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[3]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[4]  Michael Reed,et al.  Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .

[5]  S. Lane Categories for the Working Mathematician , 1971 .

[6]  J. Robin B. Cockett,et al.  Restriction categories I: categories of partial maps , 2002, Theor. Comput. Sci..

[7]  Laura Scull,et al.  Amalgamations of Categories , 2009, Canadian Mathematical Bulletin.

[8]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[9]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[10]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[11]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[12]  P. Halmos A Hilbert Space Problem Book , 1967 .

[13]  Walter Tholen,et al.  Factorization systems as Eilenberg-Moore algebras , 1993 .

[14]  P. Hines,et al.  Semantic Techniques in Quantum Computation: The Structure of Partial Isometries , 2009 .

[15]  Esfandiar Haghverdi,et al.  A categorical approach to linear logic, geometry of proofs and full completeness. , 2000 .

[16]  Y. Berezansky,et al.  Functional Analysis: Vol. I , 1996 .

[17]  Peter Hines Quantum circuit oracles for Abstract Machine computations , 2010, Theor. Comput. Sci..

[18]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[19]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[20]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[21]  Jirí Rosický,et al.  Lax factorization algebras , 2002 .

[22]  Yu. M. Berezanskii Projective spectral theorem , 1985 .

[23]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[24]  W. Tholen,et al.  NATURAL WEAK FACTORIZATION SYSTEMS , 2006 .

[25]  Julian Bradfield CONCUR '96: Concurrency Theory , 1996 .

[26]  Michael Barr,et al.  Algebraically compact functors , 1992 .

[27]  Gabriella Böhm Factorization Systems Induced by Weak Distributive Laws , 2012, Appl. Categorical Struct..

[28]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[29]  A. K. Bousfield,et al.  Constructions of factorization systems in categories , 1977 .

[30]  M. Lawson Inverse Semigroups, the Theory of Partial Symmetries , 1998 .

[31]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[32]  Samson Abramsky,et al.  Retracing some paths in Process Algebra , 1996, CONCUR.

[33]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[34]  P. Panangaden,et al.  Nuclear and trace ideals in tensored-categories , 1998, math/9805102.

[35]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .