Interaction between oceanic slab and metasomatized mantle wedge: Constraints from sodic lavas from the Qilian Orogen, NW China

[1]  M. Allen,et al.  Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China) , 2018, Journal of Petrology.

[2]  M. Allen,et al.  Oceanic accretionary belt in the West Qinling Orogen: Links between the Qinling and Qilian orogens, China , 2018, Gondwana Research.

[3]  Yong‐Fei Zheng,et al.  Author Correction: Zircon evidence for incorporation of terrigenous sediments into the magma source of continental basalts , 2018, Scientific Reports.

[4]  S. Buckman,et al.  Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt , 2018 .

[5]  Y. Niu,et al.  Qi-Qin Accretionary Belt in Central China Orogen: accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. , 2017, Science bulletin.

[6]  M. Allen,et al.  Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen : accretion of a Cambrian Oceanic Plateau? , 2017 .

[7]  F. Chen,et al.  Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes , 2017 .

[8]  M. Allen,et al.  An 850–820 Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China , 2016 .

[9]  Y. Niu,et al.  Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: A long-lasting magmatism since continental collision through slab steepening , 2016 .

[10]  P. Bievre,et al.  IUPAC-IUGS recommendation on the half life of 87Rb , 2015 .

[11]  J. Aitchison,et al.  Hualong Complex, South Qilian terrane: U–Pb and Lu–Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin , 2015 .

[12]  W. Griffin,et al.  Are continental “adakites” derived from thickened or foundered lower crust? , 2015 .

[13]  Shaun T. Brown,et al.  The Role of Subducted Basalt in the Source of Island Arc Magmas: Evidence from Seafloor Lavas of the Western Aleutians , 2015 .

[14]  C. Langmuir,et al.  Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs , 2014 .

[15]  Y. Niu,et al.  Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China , 2014 .

[16]  P. Kelemen 4.21 – One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2014 .

[17]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[18]  S. Poli,et al.  Devolatilization during subduction , 2014 .

[19]  Yue-heng Yang,et al.  Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes , 2013 .

[20]  Changqian Ma,et al.  Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth , 2013 .

[21]  Y. Kato,et al.  High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-arc Seamount: Implications for the Reaction between Slab Melts and Depleted Mantle , 2013 .

[22]  Y. Niu,et al.  Tectonics of the North Qilian orogen, NW China , 2013 .

[23]  Xian‐Hua Li,et al.  Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim , 2012 .

[24]  Y. Niu,et al.  Tholeiite–Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development , 2012 .

[25]  Shuguang Song,et al.  Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab , 2012 .

[26]  Dunyi Liu,et al.  The Neoproterozoic granitoids from the Qilian block, NW China: Evidence for a link between the Qilian and South China blocks , 2012 .

[27]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[28]  Xian‐Hua Li,et al.  Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China , 2010 .

[29]  Y. Niu,et al.  Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent—An eastern extension of the Lhasa Block , 2010 .

[30]  J. Blundy,et al.  High-pressure Hydrous Phase Relations of Radiolarian Clay and Implications for the Involvement of Subducted Sediment in Arc Magmatism , 2010 .

[31]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[32]  J. Moyen High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature” , 2009 .

[33]  T. Plank,et al.  Emerging geothermometers for estimating slab surface temperatures , 2009 .

[34]  C. Yuan,et al.  Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China , 2009 .

[35]  A. Crawford,et al.  High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts , 2008 .

[36]  D. Wyman,et al.  Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge , 2008 .

[37]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[38]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[39]  A. Crawford,et al.  Boninites and Adakites from the Northern Termination of the Tonga Trench: Implications for Adakite Petrogenesis , 2007 .

[40]  J. Chesley,et al.  High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt , 2007 .

[41]  F. Meng,et al.  A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: petrological and U‐Pb geochronological constraints , 2007 .

[42]  Z. Tian,et al.  Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. , 2007 .

[43]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[44]  W. Griffin,et al.  Trace element and isotopic composition of GJ-red zircon standard by laser ablation , 2006 .

[45]  Y. Tatsumi HIGH-MG ANDESITES IN THE SETOUCHI VOLCANIC BELT, SOUTHWESTERN JAPAN: Analogy to Archean Magmatism and Continental Crust Formation? , 2006 .

[46]  M. Thirlwall,et al.  Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines , 2006 .

[47]  T. Pettke,et al.  Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth , 2005, Nature.

[48]  T. Hirata,et al.  Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique , 2005 .

[49]  Qiang Wang,et al.  Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting , 2005 .

[50]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[51]  P. Kelemen,et al.  One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2005 .

[52]  T. Hanyu,et al.  Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan , 2003 .

[53]  J. Pearce,et al.  Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective , 2003 .

[54]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[55]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[56]  C. German,et al.  Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .

[57]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[58]  Pan Guitang Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions , 2002 .

[59]  P. Kelemen,et al.  The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study , 2001 .

[60]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[61]  M. Gutscher,et al.  Can slab melting be caused by flat subduction , 2000 .

[62]  M. Norman,et al.  Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa , 1999 .

[63]  R. Solidum,et al.  Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting , 1999 .

[64]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[65]  G. Shimoda,et al.  Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments , 1998 .

[66]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[67]  P. Kelemen,et al.  Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels , 1995, Nature.

[68]  S. Kay,et al.  Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge , 1995 .

[69]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[70]  M. Drummond,et al.  Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc , 1993 .

[71]  N. Petford,et al.  Generation of sodium-rich magmas from newly underplated basaltic crust , 1993, Nature.

[72]  J. D. de Boer,et al.  The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview , 1992, Journal of the Geological Society.

[73]  R. Stewart,et al.  Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle Volcano, Panama , 1991 .

[74]  M. Drummond,et al.  Derivation of some modern arc magmas by melting of young subducted lithosphere , 1990, Nature.

[75]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[76]  A. Crawford,et al.  The origin of island arc high-alumina basalts , 1987 .

[77]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[78]  R. Kay Aleutian magnesian andesites: Melts from subducted Pacific ocean crust , 1978 .

[79]  H. Kuno High-alumina Basalt , 1960 .