Multiscale material modeling and its application to a dynamic crack propagation problem

Here we present a multiscale field theory for modeling and simulation of multi-grain material system which consists of several different kinds of single crystals and a large number of different kinds of discrete atoms. The theoretical construction of the multiscale field theory is briefly introduced. The interatomic forces are used to formulate the governing equations for the system. A compact tension specimen made of magnesium oxide is modeled by discrete atoms in front of the crack tip and finite elements in the far field. Results showing crack propagation through the atomic region are presented.

[1]  Sidney Yip,et al.  Atomic‐level stress in an inhomogeneous system , 1991 .

[2]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[3]  Cramer,et al.  Energy dissipation and path instabilities in dynamic fracture of silicon single crystals , 2000, Physical review letters.

[4]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[5]  Youping Chen,et al.  A multiscale field theory: Nano/micro materials , 2007 .

[6]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[7]  Youping Chen,et al.  Stresses and strains at nano/micro scales , 2006 .

[8]  Modeling and simulation of a single crystal based on a multiscale field theory , 2008 .

[9]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[10]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[11]  Robert E. Rudd,et al.  Concurrent Multiscale Modeling of Embedded Nanomechanics , 2001 .

[12]  Martin T. Dove,et al.  Introduction to Lattice Dynamics: Contents , 1993 .

[13]  A. V. Duin,et al.  Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field , 2006 .

[14]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[15]  Youping Chen,et al.  Atomistic measure of the strength of MgO nanorods , 2006 .

[16]  Youping Chen,et al.  Atomistic formulation of a multiscale field theory for nano/micro solids , 2005 .

[17]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[18]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[19]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[20]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[21]  Youping Chen Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.

[22]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[23]  Youping Chen,et al.  Atomistic simulation of mechanical properties of diamond and silicon carbide by a field theory , 2007 .

[24]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[25]  E Weinan,et al.  Multiscale modeling of the dynamics of solids at finite temperature , 2005 .

[26]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[27]  Robert E. Rudd,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[28]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[29]  CONSERVATION LAWS AT NANO/MICRO SCALES , 2006 .

[30]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[31]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[32]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[33]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[34]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[35]  Shaofan Li,et al.  Perfectly matched multiscale simulations , 2005 .