A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells

The search for new energy resources is a crucial task nowadays. Research on the use of solar energy is growing every year. The aim is the design of devices that can produce a considerable amount of energy using the Sun’s radiation. The modeling of solar cells (SCs) is based on the estimation of the intrinsic parameters of electrical circuits that simulate their behavior based on the current vs. voltage characteristics. The problem of SC design is defined by highly nonlinear and multimodal objective functions. Most of the algorithms proposed to find the best solutions become trapped into local solutions. This paper introduces the Chaotic Improved Artificial Bee Colony (CIABC) algorithm for the estimation of SC parameters. It combines the use of chaotic maps instead random variables with the search capabilities of the Artificial Bee Colony approach. CIABC has also been modified to avoid the generation of new random solutions, preserving the information of previous iterations. In comparison with similar optimization methods, CIABC is able to find the global solution of complex and multimodal objective functions. Experimental results and comparisons prove that the proposed technique can design SCs, even with the presence of noise.

[1]  Detlef P. van Vuuren,et al.  Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation , 2015 .

[2]  W. Choi,et al.  A novel parameter extraction method for the one-diode solar cell model , 2010 .

[3]  Stefano Clò,et al.  The dark side of the sun: How solar power production affects the market value of solar and gas sources ☆ , 2015 .

[4]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[5]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[6]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[7]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[8]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[9]  Mehmet Fatih Tasgetiren,et al.  A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem , 2011, Inf. Sci..

[10]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[11]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[12]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[13]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[14]  Mohammad Ali Abido,et al.  Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms , 2013, Appl. Soft Comput..

[15]  Weizhou Zhong,et al.  Multi-objective Optimization using Chaos Based PSO , 2011 .

[16]  Abdullah Bugrahan Karaveli,et al.  Comparison of large scale solar PV (photovoltaic) and nuclear power plant investments in an emerging market , 2015 .

[17]  Z. Ouennoughi,et al.  Determination of Solar Cells Parameters under Illuminated Conditions , 2003 .

[18]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[19]  Junjie Li,et al.  Structural inverse analysis by hybrid simplex artificial bee colony algorithms , 2009 .

[20]  Andrew Lewis,et al.  Biogeography-based optimisation with chaos , 2014, Neural Computing and Applications.

[21]  F S Abu Mouti,et al.  OVERVIEW OF ARTIFICIAL BEE COLONY (ABC) ALGORITHM AND ITS APPLICATIONS , 2012 .

[22]  F. Caracciolo,et al.  Single-Variable Optimization Method for Evaluating Solar Cell and Solar Module Parameters , 2012, IEEE Journal of Photovoltaics.

[23]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[24]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[25]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[26]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[27]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[28]  Shiyou Yang,et al.  An artificial bee colony algorithm for inverse problems , 2009 .

[29]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[30]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[31]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[32]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[33]  G. Cheng,et al.  On the efficiency of chaos optimization algorithms for global optimization , 2007 .

[34]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[35]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[36]  Li Ming,et al.  An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments , 2013 .

[37]  Ling Wang,et al.  Particle swarm optimization for function optimization in noisy environment , 2006, Appl. Math. Comput..

[38]  Dantong Ouyang,et al.  An artificial bee colony approach for clustering , 2010, Expert Syst. Appl..

[39]  A. Laudani,et al.  Identification of the one-diode model for photovoltaic modules from datasheet values , 2014 .

[40]  J. Appelbaum,et al.  Parameters extraction of solar cells – A comparative examination of three methods , 2014 .

[41]  Zoran Miljković,et al.  Chaotic fruit fly optimization algorithm , 2015, Knowl. Based Syst..

[42]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[43]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[44]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[45]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[46]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[47]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[48]  Ghias Farivar,et al.  Photovoltaic module single diode model parameters extraction based on manufacturer datasheet parameters , 2010, 2010 IEEE International Conference on Power and Energy.

[49]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .