Investigating drainage rate effects on fractal patterns and capillary fingering in a realistic glass micromodel

Istraživanje ucinaka brzine drenaže na fraktalne uzorke i kapilarni fingering u realnom staklenom mikromodelu Izvorni znanstveni clanak Ispravna karakterizacija postupaka i mehanizama istiskivanja fluida razmjera pora je od bitne važnosti za razumijevanje i opisivanje ponasanja pri istiskivanju kod vecih mjera jezgre i rezervoara. Detaljno vizualno ispitivanje fenomena istiskivanja može se ostvariti jedino koristenjem staklenih mikromodela stvarnih dimenzija slicnih onom razvijenom u ovom radu. Provedena su razna ispitivanja brzine drenaže s fluidima iste viskoznosti u svrhu promatranja uzoraka toka u vodom ovlaženom staklenom mikromodelu. Potpuno zasicenje St, lokalna zasicenja Sx, prednja fraktalna dimenzija Df i povrsinska fraktalna dimenzija Ds, izracunati su iz slika testova visoke rezolucije i upotrijebljeni za kvalitativnu i kvantitativnu procjenu postupaka. Ustanovljeno je da St i Ds prate trendove porasta, a staze Df trend opadanja s kapilarnim brojem. To se događa zbog stabilnijih uzoraka i kompaktnih struktura koje se razvijaju u testovima s vecim brzinama ubrizgavanja. Krivulje Sx su, međutim, ostale usporedive kod razlicitog broja kapilarnih testova zbog istog uzorka mreže primijenjenog u svim eksperimentima. Napredne fraktalne mjere zajedno sa slikama eksperimenata visoke rezolucije omogucile su da se precizno opisu i istraže uzorci i strukture istiskivanja kako se stvaraju i s vremenom razvijaju pri razlicitim kombinacijama kapilarnih i viskoznih sila na koje se najvjerojatnije nailazi u stvarnim uvjetima spremista. Kljucne rijeci: celna fraktalna dimenzija, drenaža, kapilarni broj mikromodel, odgovarajuci viskozitet, potpuno zasicenje, povrsinska fraktalna dimenzija, uzorak toka

[1]  X. Jing,et al.  Pore Network Modelling of Electrical Resistivity and Capillary Pressure Characteristics , 2000 .

[2]  Invasion percolation in correlated porous media , 2000 .

[3]  Duane H. Smith,et al.  Spatial distribution of avalanches in invasion percolation: their role in fingering , 2002 .

[4]  R. Lenormand,et al.  Mechanisms of the displacement of one fluid by another in a network of capillary ducts , 1983, Journal of Fluid Mechanics.

[5]  Amnon Aharony,et al.  Accessible external perimeters of percolation clusters , 1987 .

[6]  J. Schmittbuhl,et al.  An experimental study of secondary oil migration in a three-dimensional tilted porous medium , 2012 .

[7]  Liang-Cheng Chang,et al.  Experimental study on imbibition displacement mechanisms of two-phase fluid using micro model , 2009 .

[8]  M. Blunt Flow in porous media — pore-network models and multiphase flow , 2001 .

[9]  W. V. Pinczewski,et al.  Invasion percolation: new algorithms and universality classes , 1999 .

[10]  Burst dynamics during drainage displacements in porous media: Simulations and experiments , 2000, cond-mat/0003327.

[11]  T. Grossman,et al.  Structure and perimeters of percolation clusters , 1986 .

[12]  Grunde Løvoll,et al.  Competition of gravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study , 2005 .

[13]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[14]  Maslov Time Directed Avalanches in Invasion Models. , 1995, Physical review letters.

[15]  Duane H. Smith,et al.  Fractal dimension and avalanches of invasion percolation: the effect of aspect ratio , 2004 .

[16]  G. Bromhal,et al.  Two-Phase Flow in Porous Media: Predicting Its Dependence on Capillary Number and Viscosity Ratio , 2011 .

[17]  Jay W. Grate,et al.  Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering , 2011 .

[18]  Kristian Mogensen,et al.  A Dynamic Two-Phase Pore-Scale Model of Imbibition , 1998 .

[19]  William B. Haines,et al.  Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith , 1930, The Journal of Agricultural Science.

[20]  Zhenghe Xu,et al.  Pore-Scale Investigation of the Matrix−Fracture Interaction During CO2 Injection in Naturally Fractured Oil Reservoirs , 2010 .

[21]  A. Hansen,et al.  IMMISCIBLE DISPLACEMENT OF VISCOSITY-MATCHED FLUIDS IN TWO-DIMENSIONAL POROUS MEDIA , 1997 .

[22]  Paul Meakin,et al.  Invasion percolation on substrates with correlated disorder , 1991 .

[23]  Feder,et al.  Intermittent behavior in slow drainage. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Site-bond invasion percolation with fluid trapping , 1998 .

[25]  Muhammad Sahimi,et al.  The effect of morphological disorder on hydrodynamic dispersion in flow through porous media , 1988 .

[26]  S. B. Lee Invasion percolation between two sites in two, three, and four dimensions , 2009 .

[27]  C. Zarcone,et al.  Invasion percolation in an etched network: Measurement of a fractal dimension. , 1985, Physical review letters.

[28]  Alkiviades C. Payatakes,et al.  Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks , 2007 .

[29]  Charles J Werth,et al.  Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments. , 2008, Environmental science & technology.

[30]  Jian Hou,et al.  Computerized Tomography Study of the Microscopic Flow Mechanism of Polymer Flooding , 2009 .

[31]  J. Feder,et al.  Dynamics of slow drainage in porous media , 1992 .

[32]  Cesar Zarcone,et al.  Numerical models and experiments on immiscible displacements in porous media , 1988, Journal of Fluid Mechanics.

[33]  G. Schäfer,et al.  Laboratory experiments on DNAPL gravity fingering in water-saturated porous media , 2012 .

[34]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[35]  Goodarz Ahmadi,et al.  Crossover from capillary fingering to viscous fingering for immiscible unstable flow:Experiment and modeling. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[37]  D. Wilkinson,et al.  Percolation with trapping , 1986 .

[38]  Alex Hansen,et al.  A Two-Dimensional Network Simulator for Two-Phase Flow in Porous Media , 1997 .

[39]  H. Stanley,et al.  Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon , 1985, Nature.